Мобильные процессоры ARM. Современные поколения чипов

Первые чипы ARM появились еще три десятилетия назад благодаря стараниям британской компании Acorn Computers (ныне ARM Limited), но долгое время пребывали в тени своих более именитых собратьев – процессоров архитектуры х86. Все перевернулось с ног на голову с переходом IT-индустрии в пост-компьютерную эпоху, когда балом стали править уже не ПК, а мобильные гаджеты.

Особенности архитектуры ARM

Начать стоит, пожалуй, с того, что в процессорной архитектуре x86, которую сейчас используют компании Intel и AMD, применяется набор команд CISC (Complex Instruction Set Computer), хоть и не в чистом виде. Так, большое количество сложных по своей структуре команд, что долгое время было отличительной чертой CISC, сначала декодируются в простые, и только затем обрабатываются. Понятное дело, на всю эту цепочку действий уходит немало энергии.

В качестве энергоэффективной альтернативы выступают чипы архитектуры ARM с набором команд RISC (Reduced Instruction Set Computer). Его преимущество в изначально небольшом наборе простых команд, которые обрабатываются с минимальными затратами. Как результат, сейчас на рынке потребительской электроники мирно (на самом деле, не очень мирно) уживаются две процессорные архитектуры – х86 и ARM, каждая из которых имеет свои преимущества и недостатки.


Архитектура х86 позиционируется как более универсальная с точки зрения посильных ей задач, включая даже столь ресурсоемкие, как редактирование фотографий, музыки и видео, а также шифрование и сжатие данных. В свою очередь архитектура ARM «выезжает» за счет крайне низкого энергопотребления и в целом-то достаточной производительности для важнейших на сегодня целей: прорисовки веб-страниц и воспроизведения медиaконтента.


Бизнес-модель компании ARM Limited

Сейчас компания ARM Limited занимается лишь разработкой референсных процессорных архитектур и их лицензированием. Создание же конкретных моделей чипов и их последующее массовое производство – это уже дело лицензиатов ARM, которых насчитывается превеликое множество. Есть среди них как известные лишь в узких кругах компании вроде STMicroelectronics, HiSilicon и Atmel, так и IT-гиганты, имена которых у всех на слуху – Samsung, NVIDIA и Qualcomm. С полным списком компаний-лицензиатов можно ознакомиться на соответствующей странице официального сайта ARM Limited .


Столь большое число лицензиатов вызвано в первую очередь обилием сфер применения ARM-процессоров, причем мобильные гаджеты – это лишь вершина айсберга. Недорогие и энергоэффективные чипы используется во встраиваемых системах, сетевом оборудовании и измерительных приборах. Платежные терминалы, внешние 3G-модемы и спортивные пульсометры – все эти устройства основаны на процессорной архитектуре ARM.


По подсчетам аналитиков, сама ARM Limited зарабатывает на каждом произведенном чипе $0,067 в виде роялти. Но это сильно усредненная сумма, ведь по себестоимости новейшие многоядерные процессоры значительно превосходят одноядерные чипы устаревшей архитектуры.

Однокристальная система

С технической точки зрения называть чипы архитектуры ARM процессорами не совсем верно, ведь помимо одного или нескольких вычислительных ядер они включают целый ряд сопутствующих компонентов. Более уместными в данном случае являются термины однокристальная система и система-на-чипе (от англ. system on a chip).

Так, новейшие однокристальные системы для смартфонов и планшетных компьютеров включают контроллер оперативной памяти, графический ускоритель, видеодекодер, аудиоокодек и опционально модули беспроводной связи. Узкоспециализированные чипы могут включать дополнительные контроллеры для взаимодействия с периферийными устройствами, например датчиками.


Отдельные компоненты однокристальной системы могут быть разработаны как непосредственно ARM Limited, так и сторонними компаниями. Ярким тому примером являются графические ускорители, разработкой которых помимо ARM Limited (графика Mali) занимаются Qualcomm (графика Adreno) и NVIDIA (графика GeForce ULP).

Не стоит забывать и про компанию Imagination Technologies, которая ничем другим, кроме проектирования графических ускорителей PowerVR, вообще не занимается. А ведь именно ей принадлежит чуть ли не половина глобального рынка мобильной графики: гаджеты Apple и Amazon, планшетники Samsung Galaxy Tab 2, а также недорогие смартфоны на базе процессоров MTK.

Устаревшие поколения чипов

Морально устаревшими, но все еще широко распространенными процессорными архитектурами являются ARM9 и ARM11, которые принадлежат к семействам ARMv5 и ARMv6 соответственно.

ARM9 . Чипы ARM9 могут достигать тактовой частоты 400 МГц и, скорее всего, именно они установлены внутри вашего беспроводного маршрутизатора и старенького, но все еще надежно работающего мобильного телефона вроде Sony Ericsson K750i и Nokia 6300. Критически важным для чипов ARM9 является набор инструкций Jazelle, который позволяет комфортно работать с Java-приложениями (Opera Mini, Jimm, Foliant и др.).

ARM11 . Процессоры ARM11 могут похвастаться расширенным по сравнению с ARM9 набором инструкций и куда более высокой тактовой частотой (вплоть до 1 ГГц), хотя для современных задач их мощности тоже не достаточно. Тем не менее, благодаря невысокому энергопотреблению и, что не менее важно, себестоимости, чипы ARM11 до сих пор применяются в смартфонах начального уровня: Samsung Galaxy Pocket и Nokia 500.

Современные поколения чипов

Все более-менее новые чипы архитектуры ARM принадлежат к семейству ARMv7, флагманские представители которого уже достигли отметки в восемь ядер и тактовой частоты свыше 2 ГГц. Разработанные непосредственно ARM Limited процессорные ядра принадлежат к линейке Cortex и большинство производителей однокристальных систем используют их без существенных изменений. Лишь компании Qualcomm и Apple создали собственные модификации на основе ARMv7 – первая назвала свои творения Scorpion и Krait, а вторая – Swift.


ARM Cortex-A8. Исторически первым процессорным ядром семейства ARMv7 было Cortex-A8, которое легло в основу таких известных SoC своего времени как Apple A4 (iPhone 4 и iPad) и Samsung Hummingbird (Samsung Galaxy S и Galaxy Tab). Оно демонстрирует примерно вдвое более высокую производительность по сравнению с предшествующим ARM11. К тому же, ядро Cortex-A8 получило сопроцессор NEON для обработки видео высокого разрешения и поддержку плагина Adobe Flash.

Правда, все это негативно сказалось на энергопотреблении Cortex-A8, которое значительно выше чем у ARM11. Несмотря на то, что чипы ARM Cortex-A8 до сих пор применяются в бюджетных планшетниках (однокристальная система Allwiner Boxchip A10), их дни пребывания на рынке, по всей видимости, сочтены.

ARM Cortex-A9. Вслед за Cortex-A8 компания ARM Limited представила новое поколение чипов – Cortex-A9, которое сейчас является самым распространенным и занимает среднюю ценовую нишу. Производительность ядер Cortex-A9 выросла примерно втрое по сравнению с Cortex-A8, да еще и появилась возможность объединять их по два или даже четыре на одном чипе.

Сопроцессор NEON стал уже необязательным: компания NVIDIA в своей однокристальной системе Tegra 2 его упразднила, решив освободить побольше места для графического ускорителя. Правда, ничего хорошего из этого не вышло, ведь большинство приложений-видеопроигрывателей все равно ориентировались на проверенный временем NEON.


Именно во времена «царствования» Cortex-A9 появились первые реализации предложенной ARM Limited концепции big.LITTLE, согласно которой однокристальные системы должны иметь одновременно мощные и слабые, но энергоэффективные процессорные ядра. Первой реализацией концепции big.LITTLE стала система-на-чипе NVIDIA Tegra 3 с четырьмя ядрами Cortex-A9 (до 1,7 ГГц) и пятым энергоэффективным ядром-компаньоном (500 МГц) для выполнения простеньких фоновых задач.

ARM Cortex-A5 и Cortex-A7. При проектировании процессорных ядер Cortex-A5 и Cortex-A7 компания ARM Limited преследовала одно и ту же цель – добиться компромисса между минимальным энергопотреблением ARM11 и приемлемым быстродействием Cortex-A8. Не забыли и про возможность объединения ядер по два-четыре – многоядерные чипы Cortex-A5 и Cortex-A7 мало-помалу появляются в продаже (Qualcomm MSM8625 и MTK 6589).


ARM Cortex-A15. Процессорные ядра Cortex-A15 стали логическим продолжением Cortex-A9 – как результат, чипам архитектуры ARM впервые в истории удалось примерно сравниться по быстродействию с Intel Atom, а это уже большой успех. Не зря ведь компания Canonical в системных требования к версии ОС Ubuntu Touch с полноценной многозадачностью указала двухъядерный процессор ARM Cortex-A15 или аналогичный Intel Atom.


Очень скоро в продажу поступят многочисленные гаджеты на базе NVIDIA Tegra 4 с четырьмя ядрами ARM Cortex-A15 и пятым ядром-компаньоном Cortex-A7. Вслед за NVIDIA концепцию big.LITTLE подхватила компания Samsung: «сердцем» смартфона Galaxy S4 стал чип Exynos 5 Octa с четырьмя ядрами Cortex-A15 и таким же количеством энергоэффективных ядер Cortex-A7.


Дальнейшие перспективы

Мобильные гаджеты на базе чипов Cortex-A15 еще толком не появились в продаже, а основные тенденции дальнейшего развития архитектуры ARM уже известны. Компания ARM Limited уже официально представила следующее семейство процессоров ARMv8, представители которого в обязательном порядке будут 64-разрядными. Открывают новую эпоху RISC-процессоров ядра Cortex-A53 и Cortex-A57: первое энергоэффективное, а второе высокопроизводительное, но оба способны работать с большими объемами оперативной памяти.

Производители потребительской электроники семейством процессоров ARMv8 пока особо-то не заинтересовались, но на горизонте вырисовались новые лицензиаты, планирующие вывести чипы ARM на серверный рынок: AMD и Calxeda. Идея новаторская, но вполне имеет право на жизнь: те же графические ускорители NVIDIA Tesla, состоящие из большого числа простых ядер, на практике доказали свою эффективность как серверных решений.

Характеристики ядра:

архитектура ARMv7;

размер ядра 0,5 мм 2 при использовании 28-нм техпроцесса;

8-ступенчатый конвейер;

степень суперскалярности - 2. Это означает, что подсистема подготовки команд ежетактно может генерировать для выполнения 2 команды.

математический сопроцессор имеет полностью конвейерную организацию;

выполняет команды в заданной программистом последовательности (отсутствует внеочередное выполнение команд);

имеет модуль предсказания ветвлений и уменьшенный конвейер, сокращающий вероятность неправильного предсказания перехода;

реализованы улучшенные алгоритмы выборки команд;

более скоростная кеш-память второго уровня L2, что также позволило увеличить общую эффективность вычислений.

является на 100% совместимым по системе команд с ядром Cortex A15, то есть поддерживают команды виртуализации и 40-разрядную адресацию оперативной памяти. В результате любая программа, написанная для процессора Cortex A15, может выполняться на процессоре Cortex A7, только медленнее. Это очень важная характеристика, которая позволяет производителям проектировать системы на кристалле, оснащённые как ядрами Cortex A7, так и Cortex A15, переключаясь между ними в зависимости от задачи. Фирма ARM называет это конфигурацией big.LITTLE.

переключение между различными ядрами осуществляется за 20 миллисекунд.

Такая структура оказывается полностью прозрачной для операционной системы (ОС) и нет необходимости в программных оптимизациях для увеличения энергоэффективности. Впрочем, предусмотрена возможность ставить ОС в известность о реальном числе вычислительных ядер, если это необходимо.

На базе ядер Cortex A7 создавались процессоры, оснащённые от 1 до 4 таких ядер, как самостоятельных, так и в конфигурации с Cortex A15.

Микросхемы с ядрами Cortex A7 применяются как в одно-, так и в многоядерных устройствах.

Здравствуйте наши любимые читатели. Сегодня мы расскажем вам про архитектуру процессора Cortex a53.

Вы даже и не подозреваете, как много ваших гаджетов работает благодаря этому процессору. Мало, кто знает об особенностях ядер техники и что отличает их друг от друга. В этой статье вы узнаете об особенностях конкретного популярного Cortex a53.

Характеристики

Данные процессоры могут иметь от 1 до 8 ядер, систему памяти типа L1 и общий кэш L2. Чтобы понимать, что отличает основную составляющую практически всей техники этой модели от других, нужно знать её преимущества:

  • Высокопроизводительность (поддержка широкого спектра мобильных приложений, DTV, аэрокосмических машин, хранилищ и прочей техники подобного образца);
  • Высококачественная архитектура Army8-A для автономных конструкций начального уровня;
  • Универсальность (может быть сопряжен с любыми процессорами, такими как Cortex-A72, Cortex-A57 и другие);
  • Качественный продукт с большим объёмом загрузки.

Это основные сильные стороны данного продукта, однако далеко не все его преимущества. Ядро этой марки выполняет множество функций:

  • Поддерживает до 64bit и архитектуры самых новых версий;
  • Технология безопасности TrustZone;
  • Расширения DSP и SIMD;
  • 8-ступенчатый конвейер с двумя выходами и улучшенным целым числом;
  • Может работать на частоте от 1,5 Ггц;
  • Поддержка виртуализации оборудования.

Это стандартный набор функций данной технической составляющей, однако это далеко не все функции, которые выполняет этот непростой механизм.

Где чаще всего используется

Процессоры данного типа встречаются не только в смартфонах среднего класса (Xiaomi redmi 4, Redmi 3s, Meizu m3/m5 Note и др.), а и в следующих технологиях:

  • Авиационно-космическая техника;
  • Сеть;
  • Хранилища данных (типа HDD, SDD);
  • Автомобильная информационно-развлекательная система;

Дополнительные возможности

  • Трубопровод, который отвечает за низкое энергопотребление;
  • Высокая пропускная способность, которая позволяет выполнять одновременно несколько команд;
  • Расширенные функции энергосбережения.

Процессор связан с разными IP

Данная техника используется в SoC, а также в технологиях типа Arm, графических IP, системных IP и физических IP. Мы предоставляем вам полный список инструментов, в которых может быть использован c ядром этой марки:

  • Mali-T860/Mali-T880;
  • Mali-DP550;
  • Mali-V550;
  • CoreLink;
  • Контролёр памяти;
  • Контролёр прерываний;
  • Студия разработки DS-5;
  • ARM компилятор;
  • Доски разработки;
  • Быстрые модели.

Существует 2 типа процессоров Cortex a53:

  • AArch64 – даёт возможность устанавливать и использовать 64-битные приложения;
  • AArch32 – даёт возможность использовать только существующие приложения Armv7-A.

Для чего вам нужна эта вся техническая информация

Если вы ничего не понимаете в технике и характеристиках, то более простыми словами Cortex a53 обеспечивает гораздо большую производительность нежели его предшественники с более высоким уровнем энергоэффективности. Производительность ядра даже выше, чем у марки Cortex-A7, которая стоит на многих популярных смартфонах.

Архитектура Armv8-A – это то, что определяет функциональность технологий. У данной марки ядра стоит 64-битная обработка данных, расширенная виртуальная адресация и 64-разрядные регистры общего назначения. Все эти функции сделали этот процессор первым, который был предназначен конкретно для обеспечения энергоэффективной 64-битной обработки.

Таким образом, вы поняли, что процессор Cortex a53 является именной той технической составляющей, которую не нужно пропускать, выбирая технику. Если в вашем смартфоне стоит такой процессор с использованием данной архитектуры, вам не нужно беспокоится о недостатке памяти или о быстрой разрядке телефона. Все эти проблемы в прошлом.

Мы надеемся, что наша статья была вам полезна. Если это так – подписывайтесь на наши группы в социальных сетях и следите за новыми статьями, которые также могут вам пригодиться. Не забывайте про наш канал на YouTube .