Принцип работы оптических гироскопов. Привет студент Обзор современного состояния волоконно оптических гироскопов

2 Гироскоп - устройство, способное измерять изменение углов ориентации связанного с ним тела относительно инерциальной системы координат. До недавнего времени в системах навигации в основном применялись механические гироскопы, работа- ющие на основе эффекта удержания оси вращения тела в одном направлении инерциального про- странства. Механические гироскопы - дорогостоящие приборы, поскольку для их корректной работы требуется высокая точность формы тела вращения и минимально-возможное трение подшипников.


3 В настоящее время, одним из наиболее перспективных классов гиро-приборов считается класс оптических гироскопов. Принцип действия большинства оптических гироскопов основан на эффекте Саньяка. Основные достоинства таких гироскопов: отсутствие подвижных частей; простота конструкции; короткое время запуска; высокая чувствительность; высокая линейность характеристик; низкая потребляемая мощность; высокая надежность.


Эффект Саньяка 4 Эффект Саньяка – появление фазового сдвига встречных электромагнитных волн во вращающемся кольцевом интерферометре. Δφ – фазовый сдвиг; k – волновое число; S – площадь, окаймленная оптическим путем; с – скорость волны; Ω – угловая скорость вращения системы. В рамках кинематической теории может быть получена формула (коэффициент преломления на оптическом пути принят равным единице):


5 Эффект Саньяка прямо пропорционален угловой скорости вращения интерферометра, площади, охватываемой путём распространения световых волн в интерферометре и частоте излучения. Эффект Саньяка обусловлен невзаимностью распространения встречных волн во вращающейся системе отсчета, связанной с различными длинами оптических путей.




Кольцевой лазерный гироскоп (КЛГ) 7 Частоты двух генерируемых световых волн, распространяющихся в противоположных направлениях по треугольному оптическому пути, неодинаковы из - за разности оптической длины L. Биения По сути, это обычный интерферометр Саньяка.


8


Недостатки КЛГ: 9 1. Нелинейность выходного сигнала при малой угловой скорости (влияние синхронизма). 2. Дрейф выходного сигнала из-за газовых потоков в лазере. 3. Изменение длины оптического пути под воздействием теплового расширения, давления и механических деформаций.


Волоконно-оптический гироскоп (ВОГ) 10 В отличие от КЛГ волоконно - оптические гироскопы позволяют измерять собственно угловую скорость, а не её приращение. Главными элементами ВОГ являются излучатель, рас - щепитель луча, многовитковый замкнутый контур из одно - модового диэлектрического световода с малым затуханием и фотоприемник. Волоконно - оптический гироскоп представляет собой интерферометр Саньяка, в котором круговой оптический контур заменен на катушку из длинного одномодового оптического волокна.


11


Преимущества перед КЛГ: 12 Эффект Саньяка, на котором основан принцип работы прибора, проявляется на несколько порядков сильнее из - за малых потерь в оптическом волокне и большой длины волокна. Конструкция ВОГ целиком выполняется в виде твердого тела, что облегчает эксплуатацию и повышает надежность по сравнению с КЛГ. ВОГ измеряет скорость вращения, в то время как КЛГ фиксирует приращение скорости. Конфигурация ВОГ позволяет " чувствовать " реверс направления вращения. Возможность измерения малых угловых скоростей.


13 потенциально высокая чувствительность (точность) прибора; малые габариты и масса конструкции; невысокая стоимость производства и конструирования при массовом изготовлении, относительная простота технологии; ничтожное потребление энергии; большой динамический диапазон измеряемых угловых скоростей; отсутствие вращающихся механических элементов (роторов) и подшипников; практически мгновенная готовность к работе; нечувствительность к большим линейным ускорениям. Свойства ВОГ:


14 ВОГ с кольцевым резонатором пассивного типа Выходной сигнал светоприемника резко реагирует на изменение фазы при однократном прохождении световой волной кольцевого оптического пути. Можно создать высокочувствительный датчик, измеряющий смещение резонансного пика, обусловленное поворотом. Модифицировав таким образом схему, можно уменьшить длину волокна чувствительного кольца (если гироскоп среднего класса, то вполне можно использовать даже одновитковое волоконное кольцо). Повысить чувствительность ВОГ можно с помощью кольцевого оптического резонатора, используя для этого полупрозрачные зеркала с высокими коэффициентами отражения, закрепленные на концах кольца из оптического волокна. Такой резонатор, усиливает моды, соответствующие стоячим волнам данного резонатора, и ослабляет другие.


15 Основные элементы ВОГ При конструировании волоконных оптических гироскопов, как правило, в качестве излучателей используют полупроводниковые лазеры (лазерные диоды), светодиоды и суперлюминесцентные диоды. Специфика конструкции ВОГ предъявляет дополнительные требования к источникам излучения. К ним относят: соответствие длины волны излучения номинальной длине волны световода, где потери минимальны; обеспечение достаточно высокой эффективности ввода излучения в световод; возможность работы источника излучения в непрерывном режиме без охлаждения; достаточно высокий уровень выходной мощности излучателя; долговечность, воспроизводимость характеристик, жесткость конструкции, а также минимальные габариты, масса, потребляемая мощность и стоимость. В ряде экспериментальных установок ВОГ применяют газовые лазеры.


16 В ВОГ для намотки чувствительного контура используют три вида волокна: многомодовое, одномодовое и одномодовое с устойчивой поляризацией. Длина периметра контура определяется исходя из двух предпосылок: увеличение длины контура повышает точность системы в целом, так как величина невзаимного фазового сдвига пропорциональна длине волокна для более длинного контура в большей степени на работу системы оказывают влияние параметры затухания и нерегулярности волокна. Обычно используются волокна длиной от 200 до 1500 м. Диаметр катушки выбирается по критерию минимизации потерь в волокне на изгибах и с учетом габаритных размеров устройства. Типовое значение диаметра составляет от 6 до 40 см.


17 При выборе фотодетектора для ВОГ необходимо в требуемом спектральном диапазоне обеспечивать максимальную интегральную чувствительность, минимальную эквивалентную мощность шумов и минимальный темновой ток. В качестве фотодетекторов в большинстве ВОГ используются полупроводниковые фотодиоды, р -i-n – фотодиоды и лавинные фотодиоды.




19 Добиться взаимности в системе регистрации можно, если поместить второй расщепитель пучка вдоль входного оптического пути. Общая оптическая схема ВОГ, изображенная выше, не обладает свойством взаимности, так как пучок света, распространяющийся по часовой стрелке, проходит через делитель света и отражается от него, а пучок света, распространяющийся против часовой стрелки, отражается от светоделителя дважды. Теоремы взаимности Лоренца постулирует: в случае линейной системы оптические пути в точности взаимны, если данная входная пространственная мода оказывается такой же на выходе. Если нелинейности значительны, то ВОГ будет обладать взаимностью лишь в том случае, если имеется точная симметрия свойств волокна относительно средней точки волоконного контура.



Гироскоп предназначен для измерения скорости вращения или угла поворота объектов, например роботов, электрокар, автомобилей, кораблей, самолетов, ракет и т. д. Гироскоп содержит последовательно соединенные суперлюминесцентный излучатель с выходным волоконным концом, волоконный деполяризатор типа Лио, волоконный светоделитель и волоконный анизотропный контур. Деполяризатор состоит из двух отрезков анизотропного волокна. Светоделитель выполнен из анизотропного волокна и оптически связан с фотоприемником, с которого снимается выходной сигнал. В качестве первого отрезка деполяризатора использован волоконный конец излучателя, а в качестве его второго отрезка - входной конец светоделителя. Выходные концы светоделителя соединены с концами волоконного контура таким образом, что их оси анизотропии совпадают. Гироскоп представляет собой компактную конструкцию среднего класса точности, простую и технологичную в изготовлении. 2 з.п. ф-лы, 1 ил.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Введение

1. Принципы волоконно-оптической гироскопии

1.1 Основные характеристики ВОГ

1.2 Принцип взаимности и регистрация фазы в ВОГ

1.3 Модель шумов и нестабильностей в ВОГ

2. Влияние элементов ВОГ на точностные характеристики системы

2.1 Характеристики источников излучения

2.2 Шумовые характеристики волоконно-оптического контура

2.3 Шумовые характеристики фотодетекторов

2.4 Анализ прямых динамических эффектов (температурных градиентов и механических напряжений)

2.5 Влияние внешнего магнитного поля на точностные характеристики ВОГ

3. Методы компенсации погрешностей

3.2 Компенсация избыточного шума в волоконно-оптическом гироскопе с ответвителем типа 3x3

3.3 Компенсация обратного рэлеевского рассеяния

3.4 Компенсация влияния эффекта Керра на точность ВОГ

4. Расчет сметной калькуляции НИР

4.1 Исходные положения

4.2 Определение трудоемкости и календарных сроков работы

4.3 Расчет расходов по статьям затрат и составление сметной калькуляции

4.4 Выводы по расчету

5. Безопасность жизнедеятельности и охрана труда

5.1 Организация рабочих мест

5.2 Температура, влажность, давление

5.3 Требования к освещению

5.4 Требования к уровням шума и вибрации

5.5 Требования к защите от статического электричества и излучений

5.6 Требования к видеотерминальному устройству

5.7 Электробезопасность

5.7 Пожарная безопасность

5.9 Предполагаемые методы защиты

6. Экология и охрана окружающей среды

Дипломная работа посвящена анализу погрешностей волоконно-оптического гироскопа и является попыткой последовательного рассмотрения принципов построения ВОГ исходя из минимизации влияния элементов на его точностные характеристики. В работе рассмотрены основные принципы волоконно-оптической гироскопии, дана характеристика основных элементов ВОГ различных типов и предложены методы компенсации некоторых погрешностей, обусловленных различными факторами.

Возможность создания реального высокочувствительного ВОГ появилась лишь с промышленной разработкой одномодового диэлектрического световода с малым затуханием. Конструирование ВОГ на таких световодах определяет уникальные свойства прибора:

потенциально высокая чувствительность (0.01 град/сек и менее);

малые габариты и масса конструкции, благодаря возможности создания ВОГ на интегрально-оптических схемах;

невысокая стоимость производства и относительная простота технологии по сравнению с роторными гироскопами;

низкое потребление энергии;

большой динамический диапазон измеряемых угловых скоростей;

отсутствие вращающихся механических элементов (роторов) и подшипников, что повышает надежность;

практически мгновенная готовность работы (не затрачивается время на раскрутку ротора);

низкая чувствительность к линейным ускорениям;

высокая помехоустойчивость;

Принцип действия ВОГ основан на вихревом эффекте Саньяка, открытым в 1913 году. Если в замкнутом оптическом контуре в противоположных направлениях распространяются два световых луча, то при неподвижном контуре фазовые набеги обоих лучей, прошедших весь контур, будут одинаковыми. При вращении контура вокруг оси, нормальной к плоскости контура, фазовые набеги лучей неодинаковы, а разность фаз лучей пропорциональна угловой скорости вращения контура. Для объяснения вихревого эффекта Саньяка разработаны три теории: кинематическая, доплеровская и релятивистская. В дипломной работе рассмотрены первые две.

В рамках кинематической теории рассмотрен плоский замкнутый оптический контур произвольной формы, в котором распространяются в противоположных направлениях две световые волны. Плоскость контура перпендикулярна оси вращения. Приняв участок пути светового луча бесконечно малым и выразив линейную скорость точки через ее радиус-вектор получим выражение для времени обхода участка контура двумя противоположными лучами.

При вращении контура с некоторой угловой скоростью кажущаяся длина участка для двух волн оказывается различной. Считая скорость света инвариантной величиной связываем удлинение и сокращение путей с удлинением и сокращением отрезков времени и получаем выражение для относительного запаздывания, которое можно выразить через разность фаз встречных волн. Суммирование по всей длине контура определяет итоговую разность фаз.

Рассмотрение идеального кольцевого оптического контура с системой из двух зеркал позволяет получить тот же результат для разности времен распространения встречных лучей.

Явление изменения частоты колебания, излученного передатчиком и принимаемого приемником, наблюдающееся при взаимном относительном перемещении излучателя и приемника позволяет рассмотреть эффект Саньяка в рамках доплеровской теории.

Относительный фазовый сдвиг в данном случае определяется разностью частот волн, претерпевших доплеровский сдвиг, и также выражается через угловую скорость вращения контура.

На основе рассмотренного эффекта можно построить принципиальную схему простейшего ВОГ. Излучение от источника попадает на светоделитель, где разделяется на две равные части, которые пройдя замкнутый контур, состоящий из многовитковой катушки, волокна попадают на фотодетектор. Выделенная фаза Саньяка преобразуется устройством обработки в угловую скорость вращения и при необходимости интегрируется с целью определения угла поворота системы.

Интенсивность излучения на фотодетекторе пропорциональна косинусу разности фаз встречных волн, что определяет низкую чувствительность прибора к малым угловым скоростям.

Для максимизации чувствительности к малым изменениям информативного параметра в волоконный контур необходимо поместить простой фазовый модулятор, дающий невзаимный фазовый сдвиг /2 между двумя противоположно бегущими лучами. Тогда интенсивность на фотодетекторе при малых угловых скоростях изменяется почти линейно.

Так как показания прибора полностью определяются разностью фаз встречно бегущих волн, все ошибки ВОГ связаны с невзаимностью условий их распространения.

Основными факторами, влияющими на условия распространения встречно бегущих волн, являются:

флуктуации интенсивности и частоты источника излучения;

изменение характеристик светоделителя;

обратное рассеяние от лучей, движущихся в разных направлениях;

электрооптические эффекты в волокне;

магнитооптические эффекты в волокне;

тепловые градиенты;

поляризационные эффекты;

тепловые шумы нагрузочных элементов выходного тракта;

дробовые шумы фотодетектора.

В работе проведена оценка предела чувствительности (точности) ВОГ, определяемая уровнем фотонных шумов и зависящая от интенсивности оптического излучения падающего на фотодетектор. Полученные теоретические выражения для ошибки обусловленной дробовыми шумами позволяют сделать вывод о необходимости увеличения длины контура и уменьшения полосы пропускания НЧ-фильтра выходного каскада. (график)

Использование высококогерентных лазерных источников позволяет снизить уровень дробовых шумов, однако когерентная составляющая обратного (рэлеевского) рассеяния в волокне приводит к возникновению ошибки в разности фаз между двумя лучами. Исходя из этого предпочтительно использование источника с длиной когерентности много меньшей, чем длина волоконного контура. В этом случае шум, связанный с отражением на конце волокна, суммируется некогерентно с полезным сигналом.

Использование дополнительной модуляции сигналов также позволяет «декогерировать» шум обратного рассеяния.

Во второй главе рассмотрены вопросы влияния элементов ВОГ на точностные характеристики системы.

Анализ характеристик источников излучения позволяет сделать вывод о предпочтительности использования суперлюминесцентных диодов, являющихся низко когерентными и позволяющими компенсировать влияние эффекта Керра и обратного рассеяния. Также они обладают меньшей температурной зависимостью, проще в конструктивном исполнении и являются очень надежными.

Большое внимание уделено характеристикам волоконного контура, так как именно контур является основным источником погрешностей в ВОГ. Рассмотрение количественных значений потерь в волокне является недостаточным для анализа точности ВОГ. Интерес представляет оценка статистических характеристик параметров контура. В работе рассмотрены дисперсионные свойства волокон с различными профилями показателя преломления, проведена качественная оценка зависимостей дисперсии профиля от корреляционных свойств для различных типов неоднородностей в волокне. (графики)

Полученные соотношения позволяют по известным параметрам неоднородностей косвенно определить как вносимые потери так и характер невзаимностей для различных участков волокна.

Наибольшее влияние на характеристики ВОГ могут оказывать изменение радиуса сердцевины и случайные изгибы волокна приводящие к увеличению дисперсии профилей и уширению импульсов.

Важным источником шумов в ВОГ является также фотоприемник. Фоновая засветка, дробовый шум темнового тока, квантовый шум внутреннего фотоэффекта, избыточный шум внутреннего усиления, тепловой шум усилителя и модуляционный шум преобразователя оказывают непосредственное влияние на точность ВОГ.

Качественная оценка эквивалентной мощности шума фотоприемника для различных значений полосы пропускания системы позволяет сделать вывод о необходимости использования лавинных фотодиодов обладающих минимальным уровнем шума и позволяющих значительно увеличить отношение сигнал/шум при низких уровнях сигнала.

Анализ прямых динамических эффектов позволил качественно оценить термически индуцированную невзаимность фазы Саньяка для различных значений длины контура и сделать вывод о необходимости высокой термостабилизации прибора.

Необходимость поляризационной стабильности обусловлена влиянием магнитного поля на разность фаз колебаний. (график)

Использование волокна с устойчивой поляризацией снизит требования к поляризационным устройствам и обеспечит высокую точность прибора.

В качестве компенсации погрешностей предложены два схемотехнических метода и рассмотрены варианты использования некоторых элементов ВОГ. Проведена качественная оценка выигрыша в чувствительности прибора.

Одним из путей повышения точности ВОГ может быть использование в них суперфлуоресцентных источников излучения. Такие источники близки по свойствам к тепловым, но характеризуются высоким уровнем избыточного шума. Для подавления избыточного шума можно использовать балансное детектирование. В качестве опорного сигнала использовать излучение источника, задержанное на время прохождения света по оптическому тракту ВОГ.

Для обеспечения когерентного взаимодействия информативного и опорного сигнала можно использовать в качестве ответвителя направленный ответвитель 3x3. Излучение от источника поступает через направленный ответвитель на входы чувствительного контура, а затем на фотодетекторы, выходы которых подключены к дифференциальному усилителю. Каждая из встречных волн является и информативной (сигнальной) и одновременно - опорной для другой волны. На выходе дифференциального усилителя избыточный шум, обусловленный фоновой засветкой, оказывается скомпенсированным.

Основным механизмом потерь в волокне является обратное рэлеевское рассеяние. Каждая первичная волна, противоположно распространяющаяся в волоконном контуре, возбуждает маломасштабные неоднородности в волокне, которые в свою очередь действуют как индуцированные дипольные излучатели. Световод захватывает часть рассеянного излучения и канализирует его в обратном направлении. Вклады от каждого элементарного рассеивателя суммируются векторно со случайной фазой и образуют полное рассеянное поле в каждом направлении. На выходе контура появляется составляющая фазового сдвига отличная от фазы Саньяка, что приводит к ошибке в измерении скорости.

Способы минимизации ошибки ВОГ, обусловленной обратным рэлеевским рассеянием могут быть связаны с уменьшением взаимной когерентности между первичной и вторичной (рассеянной) волной. Частотная модуляция первичного сигнала, уменьшая когерентность, не вносит дополнительной невзаимности в контур. Изменения частоты лазерного излучения также могут быть источником рандомизации фазы. Уменьшение когерентности можно также реализовать с помощью дополнительной фазовой модуляции первичной волны.

Уменьшить ошибку можно используя способ усреднения в течении постоянной интегрирования системы обработки.

Оптический нелинейный эффект Керра проявляется в виде возмущения коэффициента преломления среды при изменении интенсивности воздействующего на среду электрического поля. Если мощности оптических лучей, распространяющихся в противоположных направлениях неодинаковы, а следовательно неодинаковы и постоянные распространения, то это приводит к фазовой невзаимности контура и в результате к ошибке измерения угловой скорости.

Компенсации этого эффекта можно достичь прямоугольной модуляцией источника излучения или выбором источника с соответствующими спектральными характеристиками.

Введение

Волоконный оптический гироскоп (ВОГ) - оптико-электронный прибор, создание которого стало возможным лишь с развитием и совершенствованием элементной базы квантовой электроники. Прибор измеряет угловую скорость и углы поворота объекта, на котором он установлен. Принцип действия ВОГ основан на вихревом (вращательном) эффекте Саньяка.

Интерес зарубежных и отечественных фирм к оптическому гироскопу базируется на его потенциальных возможностях применения в качестве чувствительного элемента вращения в инерциальных системах навигации, управления и стабилизации. Этот прибор в ряде случаев может полностью заменить сложные и дорогостоящие электромеханические (роторные) гироскопы и трехосные гиростабилизированные платформы. По данным зарубежной печати в будущем в США около 50% всех гироскопов, используемых в системах навигации, управления и стабилизации объектов различного назначения, предполагается заменить волоконными оптическими гироскопами.

Возможность создания реального высокочувствительного ВОГ появилась лишь с промышленной разработкой одномодового диэлектрического световода с малым затуханием. Именно конструирование ВОГ на таких световодах определяет уникальные свойства прибора. К этим свойствам относят:

потенциально высокую чувствительность (точность) прибора, которая уже сейчас на экспериментальных макетах 0,1 град/ч и менее;

малые габариты и массу. Конструкции, благодаря возможности создания ВОГ полностью на интегральных оптических схемах;

невысокую стоимость производства и конструирования при массовом изготовлении и относительную простоту технологии;

ничтожное потребление энергии, что имеет немаловажное значение при использовании ВОГ на борту;

большой динамический диапазон измеряемых угловых скоростей (в частности, например, одним прибором можно измерять скорость поворота от 1 град/ч до 300 град/с);

отсутствие вращающихся механических элементов (роторов) и подшипников, что повышает надежность и удешевляет их производство;

практически мгновенную готовность к работе, поскольку не затрачивается время на раскрутку ротора;

нечувствительность к большим линейным ускорениям и следовательно, работоспособность в условиях высоких механических перегрузок;

высокую помехоустойчивость, низкую чувствительность к мощным внешним электромагнитным воздействиям благодаря диэлектрической природе волокна;

слабую подверженность проникающей гамма-нейтронной радиации, особенно в диапазоне 1,3 мкм.

Волоконный оптический гироскоп может быть применен в качестве жестко закрепленного на корпусе носителя чувствительного элемента (датчика) вращения в инерциальных системах управления и стабилизации. Механические гироскопы имеют так называемые гиромеханические ошибки, которые особенно сильно проявляются при маневрировании носителя (самолета, ракеты, космического аппарата). Эти ошибки еще более значительны, если инерциальная система управления конструируется с жестко закрепленными или «подвешенными» датчиками непосредственно к телу носителя. Перспектива использования дешевого оптического датчика вращения, который способен работать без гиромеханических ошибок в инерциальной системе управления, есть еще одна причина особого интереса к оптическому гироскопу.

Появление идеи и первых конструкций волоконного оптического гироскопа тесно связан с разработкой кольцевого лазерного гироскопа (КЛГ). В КЛГ чувствительным контуром является кольцевой самовозбуждающийся резонатор с активной газовой средой и отражающими зеркалами, в то время как в ВОГ пассивный многовитковый диэлектрический световодный контур возбуждается «внешним» источником светового излучения. Эти особенности определяют, по крайней мере, пять преимуществ ВОГ по сравнению с КЛГ:

В ВОГ отсутствует синхронизация противоположно бегущих типов колебаний вблизи нулевого значения угловой скорости вращения, что позволяет измерять очень малые угловые скорости, без необходимости конструировать сложные в настройке устройства смещения нулевой точки;

2. Эффект Саньяка, на котором основан принцип работы прибора, проявляется на несколько порядков сильнее из-за малых потерь в оптическом волокне и большой длины волокна.

3. Конструкция ВОГ целиком выполняется в виде твердого тела (в перспективе полностью на интегральных оптических схемах), что облегчает эксплуатацию и повышает надежность по сравнению с КЛГ.

4. ВОГ измеряет скорость вращения, в то время как КЛГ фиксирует приращение скорости.

5. Конфигурация ВОГ позволяет «чувствовать» реверс направления вращения.

Эти свойства ВОГ, позволяющие создать простые высокоточные конструкции полностью на дешевых твердых интегральных оптических схемах при массовом производстве привлекают пристальное внимание разработчиков систем управления. По мнению ряда зарубежных фирм, благодаря уникальным техническим возможностям ВОГ будут интенсивно развиваться.

Зарубежные авторы констатируют, что разработка конструкции ВОГ и доведение его до серийных образцов не простая задача. При разработке ВОГ ученые и инженеры сталкиваются с рядом трудностей. Первая связана с технологией производства элементов ВОГ. В настоящее время еще мало хорошего одномодового волокна, сохраняющего направление поляризации; производство светоделителей, поляризаторов, фазовых и частотных модуляторов, пространственных фильтров, интегральных оптических схем находится на начальной стадии развития. Число разработанных специально для ВОГ излучателей и фотодетекторов ограничено.

Фирмами и разработчиками ВОГ обе эти задачи решаются. Совершенствуется технология производства элементов в ВОГ, теоретически и экспериментально исследуются физическая природа возмущений и нестабильностей, создаются и испытываются различные схемные варианты ВОГ с компенсацией этих возмущений, разрабатываются фундаментальные вопросы использования интегральной оптики. Точность ВОГ уже сейчас близка к требуемой в инерциальных системах управления.

В специальной научной и периодической литературе проблеме ВОГ уже опубликовано множество научных статей. Анализ этих статей свидетельствует о необходимости дальнейшего изучения этой проблемы и разработки новых способов улучшения качественных характеристик ВОГ.

Систематизация и обобщение узловых вопросов теории и практики создания ВОГ также является важным этапом.

Задачей дипломной работы является анализ работы ВОГ, обобщенной модели шумов и нестабильностей и оценка предельной (потенциальной) чувствительности прибора. На основе свойства взаимности необходимо рассмотреть минимальную конфигурацию ВОГ. Затем оценить современное состояние элементной базы. При этом значительное внимание уделить свойствам волоконных световодов и провести анализ возможных неоднородностей и потерь для различных типов волокон. Рассмотреть основные элементы ВОГ: волоконный контур, излучатели и фотодетекторы, а также предложить способы компенсации шумов и нестабильностей ВОГ (таких, как обратное рэлеевское рассеяние, оптический нелинейный эффект, температурные градиенты, магнитное поле и др.).

Основной задачей дипломной работы является рассмотрение ключевых аспектов теории ВОГ на основе анализа погрешностей его элементов и качественной оценки точностных характеристик устройства с учетом использования различных подходов к решению проблемы повышения его чувствительности.

Необходимо также рассмотреть различные схемотехнические методы снижения уровня шумов и нестабильностей ВОГ.

Отдельно отразить технико-экономические аспекты работы, вопросы безопасности жизнедеятельности при проведении исследований, а также проблемы экологической безопасности при использовании прибора.

1. Принципы волоконно-оптической гироскопии

1.1 Основные характеристики ВОГ

Оптический гироскоп относится к классу приборов, в которых в замкнутом оптическом контуре распространяются встречно бегущие световые лучи. Принцип действия оптического гироскопа основан на «вихревом» эффекте Саньяка, открытым этим ученым в 1913 г. . Сущность вихревого эффекта заключается в следующем. Если в замкнутом оптическом контуре в противоположных направлениях распространяются два световых луча, то при неподвижном контуре фазовые набеги обоих лучей, прошедших весь контур, будут одинаковыми. При вращении контура вокруг оси, нормальной к плоскости контура, фазовые набеги лучей неодинаковы, а разность фаз лучей пропорциональна угловой скорости вращения контура. Для объяснения вихревого эффекта Саньяка разработаны три теории: кинематическая, доплеровская и релятивистская. Наиболее простая из них - кинематическая, наиболее строгая - релятивистская, основанная на общей теории относительности. Рассмотрим вихревой эффект Саньяка в рамках кинематической теории.

Рис 1.1. Кинематическая схема вихревого эффекта Саньяка.

На рис. 1.1 изображен плоский замкнутый оптический контур произвольной формы, в котором распространяются в противоположных направлениях две световые волны 1 и 2 (рис. 1.1). Плоскость контура перпендикулярна оси вращения, проходящей через произвольную точку О. Угловую скорость вращения контура обозначим. Участок пути светового луча АВ примем бесконечно малым, его длину обозначим l. Радиус-вектор произвольной точки контура А обозначим r. Отрезок дуги АВ" обозначим. При вращении контура вокруг точки О с угловой скоростью линейная скорость точки А равна. Учитывая, что треугольник AB"B мал:

где - угол между вектором линейной скорости точки А и касательной AM к контуру в точке А.

Проекция линейной скорости точек контура на направление вектора скорости света в этих точках

Если контур неподвижен, то время обхода участка контура АВ=l двумя противоположными лучами одинаково; обозначим его dt.

dt = l / c =. (1.3)

При вращении контура с угловой скоростью кажущееся расстояние между точками А и В для встречно бегущих лучей изменяется. Для волны бегущей из точки А в точку В, т.е. в направлении, совпадающем с направлением вращения контура, расстояние удлиняется, так как за время dt точка В переместится на угол, перейдя в точку С.

Это удлинение пути для светового луча будет равно dt, поскольку в каждое мгновение луч направлен по касательной к контуру, по этой же касательной направлена проекция линейной скорости. Таким образом, отрезок пути, проходимый лучом, равен l + dt. Рассуждая аналогично, для встречно бегущего луча света будет иметь место кажущееся сокращение отрезка пути l - dt

Считая скорость света инвариантной величиной, кажущиеся удлинения и сокращения путей для встречных лучей можно эквивалентно считать удлинениями и сокращениями отрезков времени, т.е.

Подставляя выражения (1.2)-(1.3) для и dt, получаем

Из рис 1.1. следует

где s - площадь сектора.

С точностью до бесконечно малых второго порядка площадь АОВ можно заменить на s. Тогда

Полное время распространения встречных лучей вдоль всего контура

где суммирование ведётся по числу элементарных секторов, на которые разбит весь контур.

Таким образом, полное время, затрачиваемое лучом, бегущим по часовой стрелке при обходе всего вращающегося контура, больше чем полное время, затрачиваемое лучом, бегущим против часовой стрелки.

Разность времен и или относительное запаздывание встречных волн

где S - площадь всего контура.

Если относительное запаздывание встречных волн (1.8) возникающее при вращении, выразить через разность фаз встречных волн, то она составит

Разность фаз является фазой Саньяка. Как видно, фаза Саньяка пропорциональна угловой скорости вращения контура.

Кинематическую теорию вихревого эффекта Саньяка ещё проще объяснить, рассматривая идеальный кольцевой оптический контур радиуса (рис 1.2.).

Рис 1.2. Эффект Саньяка в кольцевом оптическом контуре.

Луч света приходит в точку А и с помощью зеркал и расщепляется на два луча, один из которых распространяется по часовой стрелке в контуре, а другой - против часовой стрелки. С помощью этих же зеркал, после распространения в контуре лучи объединяются и направляются по одному, пути. При неподвижном контуре пути прохождения лучей одинаковы и равны

где с - скорость света, - время прохождения периметра контура лучом.

Оба луча приходят в точку А на расщепитесь в фазе. Если контур вращается с постоянной угловой скоростью, то луч, распространяющийся по часовой стрелке, прежде чем попадет на перемещающийся расщепитель, пройдет путь

Это вызвано тем, что за время прохождения луча по замкнутому контуру расщепитель, находившийся ранее в точке А, уйдет в точку В. Для луча, распространяющегося против часовой стрелки, путь

Как видим, пути распространения противоположно бегущих лучей разные. Поскольку скорость света с - величина постоянная, это эквивалентно разным временам прохождения лучей, распространяющихся в противоположных направлениях замкнутого вращающегося контура, и.

Разность времен распространения

В приближении первого порядка по можно записать

Что совпадает с выражением (1.8), полученным выше, если считать - площадь контура.

Эффект Саньяка может быть объяснен на основе понятия доплеровского сдвига частоты. Эффектом Доплера называется явление изменения частоты колебаний, излученных передатчиком и принимаемых приемником, наблюдающееся при взаимном относительном перемещении излучателя и приемника. При этом частота принятого колебания

где f - частота излученного колебания, V - скорость перемещения передатчика, а знаки «+» или «-» соответствуют сближению или удалению передатчика относительно наблюдателя.

Доплеровский частотный сдвиг

пропорционален скорости перемещения излучателя.

Рассмотрим кольцевой оптический контур радиуса вращающийся с угловой скоростью (рис. 1.3.). Аналогом перемещающегося излучателя в контуре является движущееся с линейной скоростью отражающее зеркало. При вращении контура встречно бегущие лучи имеют различные длины волн вследствие доплеровского сдвига, накапливаемого при отражении волны от зеркала, смещающегося со скоростью.

При вычислении фазы, накопленной в обоих плечах оптического контура, необходимо рассматривать вращающуюся систему в целом. Оба оптических пути тогда равны, но длины волн отличаются на доплеровский сдвиг. Тогда относительный фазовый сдвиг

Определим величину. Длина волны излучения, претерпевшего доплеровский сдвиг:

Подставляя полученное выражение в формулу для относительного фазового сдвига, получаем

Фаза Саньяка

что полностью совпадает с выражением (1.9), полученным при вычислении разности времен обхода лучом вращающегося контура.

Таким образом, мы рассмотрели два эквивалентных подхода к объяснению эффекта Саньяка. В первой интерпретации эффект проявляется как разность времен распространения встречно бегущих лучей во вращающемся контуре; во второй - как разность длин волн лучей в двух плечах контура одинаковой оптической длины.

Измеряя электронным устройством разность фаз, можно получить информацию от угловой скорости вращения основания (объекта), на котором закреплен контур. Интегрируя измеренный сигнал, получают угол поворота основания (объекта). Эта информация затем используется для управления и стабилизации объектов.

В зависимости от конструкции замкнутого оптического контура различают два типа оптических гироскопов. Первый тип, так называемый кольцевой лазерный гироскоп (КЛГ), в котором контур образован активной средой (смесью газов гелия и неона) и соответствующими зеркалами, образующими замкнутый путь (кольцевой лазер) . Второй тип--волоконный оптический гироскоп (ВОГ), в котором замкнутый контур образован многовитковой катушкой оптического волокна. Принципиальная схема ВОГ показана на рис. 1.3.

Рис 1.3. Принципиальная схема волоконно-оптического гироскопа.

Если контур ВОГ образовать нитью оптического волокна длиной L, намотанного на цилиндр радиуса R, то фаза Саньяка

где R - радиус витка контура; N - число витков; S -площадь витка контура.

В соответствии с рис. 1.3., излучение источника подается на светоделитель и разделяется на два луча. Два луча, обошедшие контур в противоположных направлениях, рекомбинируют на светоделителе и смешиваются в фотодетекторе. Результирующее колебание можно записать в виде

где - амплитуды колебаний; - частота излучения; ; ; - начальная фаза колебания; - фаза Саньяка.

Интенсивность излучения на фотодетекторе

Обозначив интенсивность излучения на выходе лазерного диода считая, что в волоконном контуре отсутствуют потери, и полагая, что светоделитель разделяет энергию точно поровну, имеем:

Тогда выражение (1.21) принимает вид:

Анализ выражения позволяет сделать вывод о низкой чувствительности прибора в данной конфигурации к малым угловым скоростям:

Для максимизации чувствительности к малым изменениям информативного параметра (фазы Саньяка) в волоконный контур необходимо поместить простой фазовый модулятор, дающий «невзаимный» фазовый сдвиг /2 между двумя противоположно бегущими лучами. Тогда интенсивность на фотодетекторе при малых угловых скоростях изменяется почти линейно:

а чувствительность ВОГ будет находиться на максимальном значении 0.5.

Различные способы введения «невзаимного» фазового сдвига будут рассмотрены ниже.

В конфигурации, приведенной на рис 1.3., выходной ток фотодетектора повторяет изменения интенсивности (мощности) входного излучения, т.е.:

где - квантовая эффективность фотодетектора; q - заряд электрона; h - постоянная Планка; f - частота оптического излучения.

Если пренебречь постоянной составляющей выходного тока, то на выходе фотодетектора получим сигнал

При введении невзаимного фазового сдвига /2 и для малых значений выходной ток:

Таким образом, значения выходного тока пропорциональны фазе Саньяка, которая в свою очередь пропорциональна угловой скорости вращения контура.

1.2 Принцип взаимности и регистрация фазы в ВОГ

В типичных экспериментальных конструкциях гироскопов используется катушка с R = 100 мм при длине волокна L = 500 м. Обнаружение скорости вращения в 1 град/ч требует регистрации фазы с разрешением порядка 10-5 рад. Это показано на рис. 1.4., где изображены значения фазового сдвига в функции угловой скорости вращения контура и величины LR при = 0,63 мкм.

Оптические интерференционные системы фазовой регистрации с такой чувствительностью хорошо известны, однако в гироскопах существуют некоторые особые моменты, связанные с регистрацией фазы. Первый связан с тем фактом, что зачастую гироскоп работает с номинальной почти нулевой разностью хода, и для малых изменений в относительном значении фазы имеет место пренебрежимо малое изменение интенсивности на выходе.

Рис 1.4. Фаза Саньяка в угловой скорости вращения для различных значений параметра LR.

Работа при смещении фазы в 90° максимизирует чувствительность, однако это вносит некоторую невзаимность для двух направлений распространения лучей в гироскопе, т. к. фаза луча, распространяющегося по часовой стрелке, отличается от фазы луча, распространяющегося против часовой стрелки, в отсутствии вращения.

Свойство взаимности - это второй важный момент в ВОГ. Фазовая невзаимность в ВОГ определяется дифференциальной разностью фаз встречно бегущих лучей. Любая фазовая невзаимность (разность фаз) для двух направлений дает изменения в показаниях гироскопа. Если невзаимность является функцией времени, то имеет место некоторый временной дрейф в показаниях гироскопа. Волокно длиной 500 м дает фазовую задержку порядка 1010 рад. Таким образом, для того чтобы зарегистрировать скорость вращения 0,05 град/ч, нужно, чтобы пути распространения противоположно бегущих лучей согласовывались с относительной точностью до 10-17 рад.

Следует, кроме того, отметить, что сам принцип действия волоконного оптического гироскопа основан на невзаимном свойстве распространения встречных волн во вращающейся системе отсчета (появление разности фазовых набегов двух лучей при вращении). Поэтому несомненна важность анализа невзаимных эффектов и устройств в ВОГ (по меньшей мере, хотя бы для определения точности прибора).

Принцип взаимности хорошо иллюстрируется известной теоремой Лоренца для взаимных систем. Если характеризовать две электрод магнитные волны векторами, и, где - вектор напряженности электрического поля, а - вектор напряженности магнитного поля, то принцип взаимности выполняется для систем, у которых

где - антисимметричные тензоры магнитной и диэлектрической

проницаемостей материальной среды соответственно.

Условием невзаимности является неравенство нулю приведенного выше соотношения. К средам, проявляющим невзаимность, относятся магнитно-гиротропные материалы (ферромагнетики): электрически гиротропные среды (диамагнетики), находящиеся под действием магнитного поля; прозрачные диэлектрики; среды, совершающие поступательное движение относительно любой системы координат, в которой задано электромагнитное поле; вращающиеся среды; канализирующие системы типа волноводов и световодов. Последние случаи представляют особый интерес, поскольку при вращении ВОГ появляется фазовая невзаимность, дающая фазовую разность Саньяка.

При вращательном движении среды условие невзаимности имеет вид

Исключение случайных флуктуаций может потребовать длительного накопления (интегрирования) выходного сигнала ВОГ, с тем чтобы выделить полезную составляющую (как показано в в некоторых экспериментальных установках высокочувствительных ВОГ время интегрирования доходит до минут и даже до десятков минут).

Применительно к ВОГ анализ принципа взаимности удобно проводить для цепи с четырьмя входами и выходами. Для оптического волновода четыре входа соответствуют вводам излучения вдоль двух взаимно перпендикулярных направлений поляризации на каждом конце волокна. Соответствующие входы и выходы определяются вдоль идентичных поляризационных осей.

Отсюда следует, что в случае ввода излучения с исходным направлением поляризации Х свет, выходящий с ортогональным направлением поляризации У, будет обладать различными набегами фазы в каждом направлении распространения, а свет, выходящий с исходным направлением поляризации X, будет обладать одинаковыми набегами фазы для каждого направления распространения.

В этом часть требований, налагаемых интерпретацией теоремы взаимности Лоренца, которая постулирует, что в случае линейной системы оптические пути в точности взаимны, если данная входная пространственная мода оказывается такой же на выходе.

Одним из параметров пространственной моды является поляризация; второй параметр также должен быть определен, например пространственное распределение (расположение) моды. Следовательно, на конце контура ВОГ должны быть как поляризационный фильтр (селектирующий исходную поляризацию), так и пространственный фильтр, что будет удовлетворять принципу взаимности Лоренца.

Эти довольно простые устройства в конструкции ВОГ (при условии, что они могут быть реализованы с достаточной точностью) будут гарантировать условия взаимности в системе, но только в том случае, если выполняется условие линейности. Если же нелинейности значительны, то ВОГ будет обладать взаимностью в том случае, если имеется точная симметрия относительно средней точки волоконного контура. Это условие подразумевает, что энергия, вводимая в каждый конец контура, одинакова и что свойства волокна равномерно распределены (или по крайней мере симметричны).

Мощность оптического излучения, вводимого в волокно, столь мала (всегда меньше чем 1.2 мВт), что, казалось бы, нелинейностями можно пренебречь. Однако чувствительность ВОГ к невзаимностям чрезвычайно высока и нелинейные эффекты (в частности, эффект Керра) приводят к заметным не взаимностям, эквивалентным скорости вращения выше 1 град/ч. В оптическом волокне имеет место вращение плоскости поляризации линейно-поляризованного света под действием внешнего магнитного поля (эффект Фарадея).

Вращение Фарадея -- это другой невзаимный эффект. В случае линейно-поляризованного света полное вращение зависит от линейного интеграла тока, взятого по оптическому пути. В случае ВОГ этот интеграл равен нулю в магнитном поле Земли. Однако, более тщательное изучение взаимодействия света в волокне и магнитного поля вдоль волокна указывает на то, что истинным источником вращения является индуцированное круговое двойное лучепреломление и что упомянутый выше простой подход оказывается полезным только в том случае, если обе круговые компоненты поляризации (правая и левая) обладают одинаковыми амплитудами. Это справедливо только для случая линейно-поляризованного света.

При распространении света в волокне имеют место все возможные состояния поляризации и процент пребывания света в каждом собственном круговом поляризационном состоянии Фарадеевского ротатора изменяется вдоль оптического пути случайным образом. Это приводит в результате к определенной разности фаз для двух направлений распространения линейно-поляризованной моды на выходе.

Таким образом, ВОГ весьма чувствителен к магнитному полю Земли, и при конструировании ВОГ для измерения скорости вращения требуется магнитное экранирование (или обеспечение линейной поляризации света на всем пути в волокне). Предполагая, что магнитное поле Земли равно 27 и считая, что компенсация поля отсутствует на 5% длины волокна, можно получить значение отклонения фазы, которое эквивалентно скорости вращения Земли.

Вышеизложенные моменты включали невзаимные эффекты, индуцированные в волокне; однако, уже даже первые этапы при конструировании ВОГ с точки зрения сохранения взаимности в системе регистрации должны заключаться в том, чтобы обеспечить одинаковую длину оптических путей в ВОГ.

На рис. 1.3. видно, что эта конфигурация не обладает свойством взаимности, так как пучок света, распространяющийся по часовой стрелке, проходит через делитель света дважды, а пучок света, распространяющийся против часовой стрелки, отражается от светоделителя дважды. Но в то же время взаимный оптический выходной путь от чувствительного контура идет в направлении обратно к источнику (от светоделителя к диоду), т. е. вдоль входного оптического пути.

Следовательно, добиться взаимности в системе регистрации можно, если поместить второй расщепитель пучка вдоль входногo оптического пути (рис. 1.5.).

Диапазон скоростей вращения, которые измеряются высокочувствительным гироскопом инерциальных систем управления, простирается от 0,1 град/ч до 400 град/ч. При LR = 100 м этим значениям скорости соответствует диапазон изменения фазы от 10 до 10 рад (рис.1.4.).

Рис 1.5. Схема ВОГ с постоянным смещением разности фаз.

К настоящему времени уже затрачены значительные усилия на увеличение чувствительности прибора к низким скоростям, и в то же время весьма мало внимания уделяется проблемам, связанным с увеличением требуемого динамического диапазона.

Как уже отмечалось, в случае необходимости измерения больших изменений интенсивности для данного изменения фазы нужно внести фазовый сдвиг /2, т. е. интерферометр должен работать в режиме квадратуры. В этом режиме связь между изменениями интенсивности и изменениями фазы является линейной (до 1%) только до максимальных отклонений фазы в 0,1 рад. Компенсация нелинейности может быть осуществлена в самой системе регистрации, однако лишь до максимального отклонения фазы порядка 1 рад.

Существует ряд способов регистрации фазы, которые могут быть использованы при конструировании ВОГ.

Наиболее распространены схемы, где используется статическая разность фаз в 90° между двумя лучами и схемы с переменной разностью фаз в 90°.

Статическая невзаимная разность фаз между лучами, распространяющимися по часовой и против часовой стрелки, может создаваться, например, с помощью элемента Фарадея, размещаемого на одном конце волоконного контура (рис. 1.5.). Изменения регистрируемой интенсивности на взаимном выходе соответствуют изменениям в значении относительной фазы для двух лучей, обегающих контур.

Основываясь на принципах смещения фазы можно предложить другой принцип регистрации обладающий более высокой чувствительностью.

Относительная фаза для лучей, распространяющихся по двум направлениям, модулируется по фазе (- /2, /2) на частоте 1/2Т (Т - время прохождения луча через контур). Таким образом, свет, инжектируемый в момент времени, в направлении по часовой стрелке испытывает задержку на 90°, свет, распространяющийся в направлении против часовой стрелки, не испытывает задержки (это определяется положением фазового модулятора, как показано на рис. 1.4.).

Однако, к тому моменту времени, когда движущийся против часовой стрелки луч достигнет положения фазового модулятора, смещения фазы не будет. Свет, инжектируемый по часовой стрелке в момент, времени, интерферирует с волной, распространяющейся против часовой стрелки со сдвигом фаз - 90°, и т. д.

Следовательно, результирующая волна на выходе, которая включает как эффект периодического фазового смещения (дающего в принципе постоянный уровень интенсивности на выходе), так и фазовый сдвиг из-за эффекта Саньяка, модулируется так, как это показано на рис. 1.5. Таким образом, выходной сигнал фотодетектора

При модуляции:

Глубина модуляции зависит от фазы, индуцированной вращением.

При создании ВОГ для модуляции обычно используется цилиндрический пьезоэлектрический датчик, вокруг которого намотано волокно. Более удобно использовать синусоидальную модуляцию относительной фазы двух противоположно бегущих лучей. Если разность фаз, индуцированная вращением, равна, то легко показать, что переменная составляющая интенсивности суммарной волны на выходе интерферометра, с учетом периодической фазовой модуляции на частоте и с девиацией будет равна

Используя стандартное разложение по Бесселевым функциям, получаем:

Таким образом регистрация на частоте модуляции дает сигнал, амплитуда которого пропорциональна; эта величина может быть сделана максимальной, если выбрать значение, максимизирующее (т.е. 1.8 рад).

Величина девиации является максимальной индуцированной эффективной разностью фаз между лучами, движущимися по часовой стрелке и против часовой стрелки за время цикла модуляции. При оценке этого значения надо знать не только глубину модуляции самого датчика, необходимо учитывать также пролетное время для оптического пути в волокне.

1.3 Модел ь шумов и нестабильностей в ВОГ

Волоконный оптический гироскоп представляет собой достаточно сложную оптико-электронную систему. При конструировании реального прибора оптические элементы и электронные устройства должны выбираться и компоноваться так, чтобы минимизировать влияние внешних возмущений (температурных градиентов, механических и акустических вибраций, магнитных полей и др.). В самом приборе, кроме того, имеет место ряд внутренних источников шумов и нестабильностей. Условно эти шумы и нестабильности можно разделить на быстрые и медленные возмущения. Быстрые возмущения оказывают случайное кратковременное усредненное влияние (секунды) на чувствительность ВОГ; они отчетливо проявляются при нулевой скорости вращения (кратковременный шум). Медленные возмущения вызывают медленный дрейф сигнала, приводящий к долговременным уходам в считывании показаний ВОГ (долговременный дрейф).

Обобщенная модель источников шумов и нестабильностей в ВОГ показана на рис. 1.6.

Рис 1.6. Обобщённая модель шумов и нестабильностей в ВОГ.

Если исключить влияние всех источников шумов и нестабильностей в ВОГ, что, конечно возможно лишь в принципе, то всегда остаются принципиально неустранимые шумы - так называемые квантовые или фотонные шумы; их называют также дробовыми шумами. Эти шумы появляются лишь в присутствии полезного оптического сигнала на входе фотодетектора и обусловлены случайным распределением скорости прихода фотонов на фотодетектор, что приводит к случайным флуктуациям тока фотодетектора. В этом случае чувствительность (точность) ВОГ ограничивается лишь дробовыми (фотонными) шумами. Чувствительность (точность) ВОГ, определяемая дробовыми (фотонными) шумами, как и всяких других оптических информационно-измерительных систем, является фундаментальным пределом чувствительности (точности) прибора. Фотонные шумы являются следствием квантовой природы светового излучения. Применительно к оптическим системам передачи информации предельная помехоустойчивость этих систем, обусловленная фотонными шумами, была вычислена в .

Следуя работам , проведем оценку фундаментального предела чувствительность (точности) ВОГ.

Уровень фотонных шумов зависит от интенсивности оптического излучения, падающего на фотодетектор, и определяется флуктуациями интенсивности оптического излучения.

Полученная выше формула для интенсивности излучения на фотодетекторе позволяет записать выражение для мощности излучения, падающего на фотодетектор в виде:

где Р - мощность входного в ВОГ излучения.

Из этого выражения следует, что дробовые (фотонные) шумы, обусловленные процессом детектирования мощности излучения, связаны с появлением "фазовых" шумов и соответственно приводят к ошибке измерения угловой скорости вращения. Если фотодетектор принимает поток фотонов, то число обнаруживаемых фотонов в единицу времени является случайной величиной, распределенной по закону Пуассона (в случае использования лазерного излучателя) Математическое ожидание числа фотонов, падающих на фотодетектор, за время интегрирования Т равно средней энергии, деленной на энергию одного фотона:

где h - постоянная Планка; f - частота излучения.

Среднеквадратическое значение числа фотонов пуассоновского распределения равно квадратному корню из среднего значения, т. е.

Найдем среднеквадратическое значение "фазового" шума:

Тогда с учётом выражения (1.35)получим:

где - полоса пропускания системы обнаружения и обработки сигнала.

Для типовых значений мкВт и Гц

Отсюда следует, что при ширине полосы 1 Гц предел чувствительности по измеряемой фазе составляет рад.

Для определения среднеквадратической ошибки измерения угловой скорости вращения, обусловленной фотонным шумом, воспользуемся выражением для фазы Саньяка:

Приняв, что типовой ВОГ имеет L = 1 км, D = 10 см, (1 / 2)P0 = 100 мкВт, f = Гц, имеем:

Откуда следует, что для ширины полосы 1 Гц и для контура с LR = 50 порог регистрации скорости вращения составляет 0.01 град/ч. Выражая полосу пропускания через единицы, обратные часам, получаем выражение для минимального случайного дрейфа ВОГ

Оценку предельной чувствительности ВОГ можно найти по отношению сигнал-шум на выходе устройства обработки. Устройство обработки выходного сигнала ВОГ состоит из фотодетектора с квантовой эффективностью, усилителя с коэффициентом усиления (умножения) G , нагрузочного сопротивления Rн и низкочастотного фильтра с полосой пропускания f.

Выходной ток фотодетектора:

где, q - заряд электрона.

Учитывая коэффициент усиления G , сигнальную составляющую тока запишем в виде

Мощность сигнальной составляющей равна

Мощность дробовых шумов согласно стандартной методике вычисления отношения сигнал-шум вычисляется по формуле Шотки и равна:

При вычислении мощности шума учитываются только принципиально неустранимые дробовые шумы полезного сигнала.

Отношение сигнал-шум примет вид

Полагая (с / ш) = 1 , заменяя функцию синуса его аргументом, подставляя вместо с ее значение через угловую скорость вращения, получаем минимально обнаруживаемую угловую скорость вращения:

Подобные документы

    Оптические кабели и разъемы, их конструкции и параметры. Основные разновидности волоконно-оптических кабелей. Классификация приемников оптического излучения. Основные параметры и характеристики полупроводниковых источников оптического излучения.

    курс лекций , добавлен 13.12.2009

    Принцип действия обобщенного волоконно-оптического датчика. Оптическая схема модуляции света. Классификация фазовых (интерферометрических) датчиков. Внешний вид интерферометра световолоконного автоматизированного ИСА-1, технические характеристики.

    доклад , добавлен 19.07.2015

    Конструкция оптического волокна и расчет количества каналов по магистрали. Выбор топологий волоконно-оптических линий связи, типа и конструкции оптического кабеля, источника оптического излучения. Расчет потерь в линейном тракте и резервной мощности.

    курсовая работа , добавлен 09.02.2011

    Принцип построения волоконно-оптической линии. Оценка физических параметров, дисперсии и потерь в оптическом волокне. Выбор кабеля, системы передачи. Расчет длины участка регенерации, разработка схемы. Анализ помехозащищенности системы передачи.

    курсовая работа , добавлен 01.10.2012

    Схема трассы волоконно-оптического кабеля. Выбор оптического кабеля, его характеристики для подвешивания и прокладки в грунт. Расчет параметров световода. Выбор оборудования и оценка быстродействия кабеля, его паспортизация. Поиск и анализ повреждений.

    курсовая работа , добавлен 07.11.2012

    Математическая модель тетрады чувствительных элементов прибора БИУС-ВО. Принцип действия чувствительного элемента прибора БИУС-ВО – волоконно–оптического гироскопа. Разработка методики оценки шумовых составляющих канала измерения угловой скорости.

    дипломная работа , добавлен 24.09.2012

    Принцип работы оптического волокна, основанный на эффекте полного внутреннего отражения. Преимущества волоконно-оптических линий связи (ВОЛС), области их применения. Оптические волокна, используемые для построения ВОЛС, технология их изготовления.

    реферат , добавлен 26.03.2019

    Определение затухания (ослабления), дисперсии, полосы пропускания, максимальной скорости передачи двоичных импульсов в волоконно-оптической системе. Построение зависимости выходной мощности источника оптического излучения от величины электрического тока.

    контрольная работа , добавлен 21.06.2010

    Цифровые волоконно-оптические системы связи, понятие, структура. Основные принципы цифровой системы передачи данных. Процессы, происходящие в оптическом волокне, и их влияние на скорость и дальность передачи информации. Контроль PMD.

    курсовая работа , добавлен 28.08.2007

    Общее описание и назначение, функциональные особенности и структура пассивных компонентов волоконно-оптических линий связи: соединители и разветвители. Мультиплексоры и демультиплексоры. Делители оптической мощности, принцип их действия и значение.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Введение

1. Принципы волоконно-оптической гироскопии

1.1 Основные характеристики ВОГ

1.2 Принцип взаимности и регистрация фазы в ВОГ

1.3 Модель шумов и нестабильностей в ВОГ

2. Влияние элементов ВОГ на точностные характеристики системы

2.1 Характеристики источников излучения

2.2 Шумовые характеристики волоконно-оптического контура

2.3 Шумовые характеристики фотодетекторов

2.4 Анализ прямых динамических эффектов (температурных градиентов и механических напряжений)

2.5 Влияние внешнего магнитного поля на точностные характеристики ВОГ

3. Методы компенсации погрешностей

3.2 Компенсация избыточного шума в волоконно-оптическом гироскопе с ответвителем типа 3x3

3.3 Компенсация обратного рэлеевского рассеяния

3.4 Компенсация влияния эффекта Керра на точность ВОГ

4. Расчет сметной калькуляции НИР

4.1 Исходные положения

4.2 Определение трудоемкости и календарных сроков работы

4.3 Расчет расходов по статьям затрат и составление сметной калькуляции

4.4 Выводы по расчету

5. Безопасность жизнедеятельности и охрана труда

5.1 Организация рабочих мест

5.2 Температура, влажность, давление

5.3 Требования к освещению

5.4 Требования к уровням шума и вибрации

5.5 Требования к защите от статического электричества и излучений

5.6 Требования к видеотерминальному устройству

5.7 Электробезопасность

5.7 Пожарная безопасность

5.9 Предполагаемые методы защиты

6. Экология и охрана окружающей среды

Дипломная работа посвящена анализу погрешностей волоконно-оптического гироскопа и является попыткой последовательного рассмотрения принципов построения ВОГ исходя из минимизации влияния элементов на его точностные характеристики. В работе рассмотрены основные принципы волоконно-оптической гироскопии, дана характеристика основных элементов ВОГ различных типов и предложены методы компенсации некоторых погрешностей, обусловленных различными факторами.

Возможность создания реального высокочувствительного ВОГ появилась лишь с промышленной разработкой одномодового диэлектрического световода с малым затуханием. Конструирование ВОГ на таких световодах определяет уникальные свойства прибора:

потенциально высокая чувствительность (0.01 град/сек и менее);

малые габариты и масса конструкции, благодаря возможности создания ВОГ на интегрально-оптических схемах;

невысокая стоимость производства и относительная простота технологии по сравнению с роторными гироскопами;

низкое потребление энергии;

большой динамический диапазон измеряемых угловых скоростей;

отсутствие вращающихся механических элементов (роторов) и подшипников, что повышает надежность;

практически мгновенная готовность работы (не затрачивается время на раскрутку ротора);

низкая чувствительность к линейным ускорениям;

высокая помехоустойчивость;

Принцип действия ВОГ основан на вихревом эффекте Саньяка, открытым в 1913 году. Если в замкнутом оптическом контуре в противоположных направлениях распространяются два световых луча, то при неподвижном контуре фазовые набеги обоих лучей, прошедших весь контур, будут одинаковыми. При вращении контура вокруг оси, нормальной к плоскости контура, фазовые набеги лучей неодинаковы, а разность фаз лучей пропорциональна угловой скорости вращения контура. Для объяснения вихревого эффекта Саньяка разработаны три теории: кинематическая, доплеровская и релятивистская. В дипломной работе рассмотрены первые две.

В рамках кинематической теории рассмотрен плоский замкнутый оптический контур произвольной формы, в котором распространяются в противоположных направлениях две световые волны. Плоскость контура перпендикулярна оси вращения. Приняв участок пути светового луча бесконечно малым и выразив линейную скорость точки через ее радиус-вектор получим выражение для времени обхода участка контура двумя противоположными лучами.

При вращении контура с некоторой угловой скоростью кажущаяся длина участка для двух волн оказывается различной. Считая скорость света инвариантной величиной связываем удлинение и сокращение путей с удлинением и сокращением отрезков времени и получаем выражение для относительного запаздывания, которое можно выразить через разность фаз встречных волн. Суммирование по всей длине контура определяет итоговую разность фаз.

Рассмотрение идеального кольцевого оптического контура с системой из двух зеркал позволяет получить тот же результат для разности времен распространения встречных лучей.

Явление изменения частоты колебания, излученного передатчиком и принимаемого приемником, наблюдающееся при взаимном относительном перемещении излучателя и приемника позволяет рассмотреть эффект Саньяка в рамках доплеровской теории.

Относительный фазовый сдвиг в данном случае определяется разностью частот волн, претерпевших доплеровский сдвиг, и также выражается через угловую скорость вращения контура.

На основе рассмотренного эффекта можно построить принципиальную схему простейшего ВОГ. Излучение от источника попадает на светоделитель, где разделяется на две равные части, которые пройдя замкнутый контур, состоящий из многовитковой катушки, волокна попадают на фотодетектор. Выделенная фаза Саньяка преобразуется устройством обработки в угловую скорость вращения и при необходимости интегрируется с целью определения угла поворота системы.

Интенсивность излучения на фотодетекторе пропорциональна косинусу разности фаз встречных волн, что определяет низкую чувствительность прибора к малым угловым скоростям.

Для максимизации чувствительности к малым изменениям информативного параметра в волоконный контур необходимо поместить простой фазовый модулятор, дающий невзаимный фазовый сдвиг /2 между двумя противоположно бегущими лучами. Тогда интенсивность на фотодетекторе при малых угловых скоростях изменяется почти линейно.

Так как показания прибора полностью определяются разностью фаз встречно бегущих волн, все ошибки ВОГ связаны с невзаимностью условий их распространения.

Основными факторами, влияющими на условия распространения встречно бегущих волн, являются:

флуктуации интенсивности и частоты источника излучения;

изменение характеристик светоделителя;

обратное рассеяние от лучей, движущихся в разных направлениях;

электрооптические эффекты в волокне;

магнитооптические эффекты в волокне;

тепловые градиенты;

поляризационные эффекты;

тепловые шумы нагрузочных элементов выходного тракта;

дробовые шумы фотодетектора.

В работе проведена оценка предела чувствительности (точности) ВОГ, определяемая уровнем фотонных шумов и зависящая от интенсивности оптического излучения падающего на фотодетектор. Полученные теоретические выражения для ошибки обусловленной дробовыми шумами позволяют сделать вывод о необходимости увеличения длины контура и уменьшения полосы пропускания НЧ-фильтра выходного каскада. (график)

Использование высококогерентных лазерных источников позволяет снизить уровень дробовых шумов, однако когерентная составляющая обратного (рэлеевского) рассеяния в волокне приводит к возникновению ошибки в разности фаз между двумя лучами. Исходя из этого предпочтительно использование источника с длиной когерентности много меньшей, чем длина волоконного контура. В этом случае шум, связанный с отражением на конце волокна, суммируется некогерентно с полезным сигналом.

Использование дополнительной модуляции сигналов также позволяет «декогерировать» шум обратного рассеяния.

Во второй главе рассмотрены вопросы влияния элементов ВОГ на точностные характеристики системы.

Анализ характеристик источников излучения позволяет сделать вывод о предпочтительности использования суперлюминесцентных диодов, являющихся низко когерентными и позволяющими компенсировать влияние эффекта Керра и обратного рассеяния. Также они обладают меньшей температурной зависимостью, проще в конструктивном исполнении и являются очень надежными.

Большое внимание уделено характеристикам волоконного контура, так как именно контур является основным источником погрешностей в ВОГ. Рассмотрение количественных значений потерь в волокне является недостаточным для анализа точности ВОГ. Интерес представляет оценка статистических характеристик параметров контура. В работе рассмотрены дисперсионные свойства волокон с различными профилями показателя преломления, проведена качественная оценка зависимостей дисперсии профиля от корреляционных свойств для различных типов неоднородностей в волокне. (графики)

Полученные соотношения позволяют по известным параметрам неоднородностей косвенно определить как вносимые потери так и характер невзаимностей для различных участков волокна.

Наибольшее влияние на характеристики ВОГ могут оказывать изменение радиуса сердцевины и случайные изгибы волокна приводящие к увеличению дисперсии профилей и уширению импульсов.

Важным источником шумов в ВОГ является также фотоприемник. Фоновая засветка, дробовый шум темнового тока, квантовый шум внутреннего фотоэффекта, избыточный шум внутреннего усиления, тепловой шум усилителя и модуляционный шум преобразователя оказывают непосредственное влияние на точность ВОГ.

Качественная оценка эквивалентной мощности шума фотоприемника для различных значений полосы пропускания системы позволяет сделать вывод о необходимости использования лавинных фотодиодов обладающих минимальным уровнем шума и позволяющих значительно увеличить отношение сигнал/шум при низких уровнях сигнала.

Анализ прямых динамических эффектов позволил качественно оценить термически индуцированную невзаимность фазы Саньяка для различных значений длины контура и сделать вывод о необходимости высокой термостабилизации прибора.

Необходимость поляризационной стабильности обусловлена влиянием магнитного поля на разность фаз колебаний. (график)

Использование волокна с устойчивой поляризацией снизит требования к поляризационным устройствам и обеспечит высокую точность прибора.

В качестве компенсации погрешностей предложены два схемотехнических метода и рассмотрены варианты использования некоторых элементов ВОГ. Проведена качественная оценка выигрыша в чувствительности прибора.

Одним из путей повышения точности ВОГ может быть использование в них суперфлуоресцентных источников излучения. Такие источники близки по свойствам к тепловым, но характеризуются высоким уровнем избыточного шума. Для подавления избыточного шума можно использовать балансное детектирование. В качестве опорного сигнала использовать излучение источника, задержанное на время прохождения света по оптическому тракту ВОГ.

Для обеспечения когерентного взаимодействия информативного и опорного сигнала можно использовать в качестве ответвителя направленный ответвитель 3x3. Излучение от источника поступает через направленный ответвитель на входы чувствительного контура, а затем на фотодетекторы, выходы которых подключены к дифференциальному усилителю. Каждая из встречных волн является и информативной (сигнальной) и одновременно - опорной для другой волны. На выходе дифференциального усилителя избыточный шум, обусловленный фоновой засветкой, оказывается скомпенсированным.

Основным механизмом потерь в волокне является обратное рэлеевское рассеяние. Каждая первичная волна, противоположно распространяющаяся в волоконном контуре, возбуждает маломасштабные неоднородности в волокне, которые в свою очередь действуют как индуцированные дипольные излучатели. Световод захватывает часть рассеянного излучения и канализирует его в обратном направлении. Вклады от каждого элементарного рассеивателя суммируются векторно со случайной фазой и образуют полное рассеянное поле в каждом направлении. На выходе контура появляется составляющая фазового сдвига отличная от фазы Саньяка, что приводит к ошибке в измерении скорости.

Способы минимизации ошибки ВОГ, обусловленной обратным рэлеевским рассеянием могут быть связаны с уменьшением взаимной когерентности между первичной и вторичной (рассеянной) волной. Частотная модуляция первичного сигнала, уменьшая когерентность, не вносит дополнительной невзаимности в контур. Изменения частоты лазерного излучения также могут быть источником рандомизации фазы. Уменьшение когерентности можно также реализовать с помощью дополнительной фазовой модуляции первичной волны.

Уменьшить ошибку можно используя способ усреднения в течении постоянной интегрирования системы обработки.

Оптический нелинейный эффект Керра проявляется в виде возмущения коэффициента преломления среды при изменении интенсивности воздействующего на среду электрического поля. Если мощности оптических лучей, распространяющихся в противоположных направлениях неодинаковы, а следовательно неодинаковы и постоянные распространения, то это приводит к фазовой невзаимности контура и в результате к ошибке измерения угловой скорости.

Компенсации этого эффекта можно достичь прямоугольной модуляцией источника излучения или выбором источника с соответствующими спектральными характеристиками.

Введение

Волоконный оптический гироскоп (ВОГ) - оптико-электронный прибор, создание которого стало возможным лишь с развитием и совершенствованием элементной базы квантовой электроники. Прибор измеряет угловую скорость и углы поворота объекта, на котором он установлен. Принцип действия ВОГ основан на вихревом (вращательном) эффекте Саньяка.

Интерес зарубежных и отечественных фирм к оптическому гироскопу базируется на его потенциальных возможностях применения в качестве чувствительного элемента вращения в инерциальных системах навигации, управления и стабилизации. Этот прибор в ряде случаев может полностью заменить сложные и дорогостоящие электромеханические (роторные) гироскопы и трехосные гиростабилизированные платформы. По данным зарубежной печати в будущем в США около 50% всех гироскопов, используемых в системах навигации, управления и стабилизации объектов различного назначения, предполагается заменить волоконными оптическими гироскопами.

Возможность создания реального высокочувствительного ВОГ появилась лишь с промышленной разработкой одномодового диэлектрического световода с малым затуханием. Именно конструирование ВОГ на таких световодах определяет уникальные свойства прибора. К этим свойствам относят:

потенциально высокую чувствительность (точность) прибора, которая уже сейчас на экспериментальных макетах 0,1 град/ч и менее;

малые габариты и массу. Конструкции, благодаря возможности создания ВОГ полностью на интегральных оптических схемах;

невысокую стоимость производства и конструирования при массовом изготовлении и относительную простоту технологии;

ничтожное потребление энергии, что имеет немаловажное значение при использовании ВОГ на борту;

большой динамический диапазон измеряемых угловых скоростей (в частности, например, одним прибором можно измерять скорость поворота от 1 град/ч до 300 град/с);

отсутствие вращающихся механических элементов (роторов) и подшипников, что повышает надежность и удешевляет их производство;

практически мгновенную готовность к работе, поскольку не затрачивается время на раскрутку ротора;

нечувствительность к большим линейным ускорениям и следовательно, работоспособность в условиях высоких механических перегрузок;

высокую помехоустойчивость, низкую чувствительность к мощным внешним электромагнитным воздействиям благодаря диэлектрической природе волокна;

слабую подверженность проникающей гамма-нейтронной радиации, особенно в диапазоне 1,3 мкм.

Волоконный оптический гироскоп может быть применен в качестве жестко закрепленного на корпусе носителя чувствительного элемента (датчика) вращения в инерциальных системах управления и стабилизации. Механические гироскопы имеют так называемые гиромеханические ошибки, которые особенно сильно проявляются при маневрировании носителя (самолета, ракеты, космического аппарата). Эти ошибки еще более значительны, если инерциальная система управления конструируется с жестко закрепленными или «подвешенными» датчиками непосредственно к телу носителя. Перспектива использования дешевого оптического датчика вращения, который способен работать без гиромеханических ошибок в инерциальной системе управления, есть еще одна причина особого интереса к оптическому гироскопу.

Появление идеи и первых конструкций волоконного оптического гироскопа тесно связан с разработкой кольцевого лазерного гироскопа (КЛГ). В КЛГ чувствительным контуром является кольцевой самовозбуждающийся резонатор с активной газовой средой и отражающими зеркалами, в то время как в ВОГ пассивный многовитковый диэлектрический световодный контур возбуждается «внешним» источником светового излучения. Эти особенности определяют, по крайней мере, пять преимуществ ВОГ по сравнению с КЛГ:

В ВОГ отсутствует синхронизация противоположно бегущих типов колебаний вблизи нулевого значения угловой скорости вращения, что позволяет измерять очень малые угловые скорости, без необходимости конструировать сложные в настройке устройства смещения нулевой точки;

2. Эффект Саньяка, на котором основан принцип работы прибора, проявляется на несколько порядков сильнее из-за малых потерь в оптическом волокне и большой длины волокна.

3. Конструкция ВОГ целиком выполняется в виде твердого тела (в перспективе полностью на интегральных оптических схемах), что облегчает эксплуатацию и повышает надежность по сравнению с КЛГ.

4. ВОГ измеряет скорость вращения, в то время как КЛГ фиксирует приращение скорости.

5. Конфигурация ВОГ позволяет «чувствовать» реверс направления вращения.

Эти свойства ВОГ, позволяющие создать простые высокоточные конструкции полностью на дешевых твердых интегральных оптических схемах при массовом производстве привлекают пристальное внимание разработчиков систем управления. По мнению ряда зарубежных фирм, благодаря уникальным техническим возможностям ВОГ будут интенсивно развиваться.

Зарубежные авторы констатируют, что разработка конструкции ВОГ и доведение его до серийных образцов не простая задача. При разработке ВОГ ученые и инженеры сталкиваются с рядом трудностей. Первая связана с технологией производства элементов ВОГ. В настоящее время еще мало хорошего одномодового волокна, сохраняющего направление поляризации; производство светоделителей, поляризаторов, фазовых и частотных модуляторов, пространственных фильтров, интегральных оптических схем находится на начальной стадии развития. Число разработанных специально для ВОГ излучателей и фотодетекторов ограничено.

Фирмами и разработчиками ВОГ обе эти задачи решаются. Совершенствуется технология производства элементов в ВОГ, теоретически и экспериментально исследуются физическая природа возмущений и нестабильностей, создаются и испытываются различные схемные варианты ВОГ с компенсацией этих возмущений, разрабатываются фундаментальные вопросы использования интегральной оптики. Точность ВОГ уже сейчас близка к требуемой в инерциальных системах управления.

В специальной научной и периодической литературе проблеме ВОГ уже опубликовано множество научных статей. Анализ этих статей свидетельствует о необходимости дальнейшего изучения этой проблемы и разработки новых способов улучшения качественных характеристик ВОГ.

Систематизация и обобщение узловых вопросов теории и практики создания ВОГ также является важным этапом.

Задачей дипломной работы является анализ работы ВОГ, обобщенной модели шумов и нестабильностей и оценка предельной (потенциальной) чувствительности прибора. На основе свойства взаимности необходимо рассмотреть минимальную конфигурацию ВОГ. Затем оценить современное состояние элементной базы. При этом значительное внимание уделить свойствам волоконных световодов и провести анализ возможных неоднородностей и потерь для различных типов волокон. Рассмотреть основные элементы ВОГ: волоконный контур, излучатели и фотодетекторы, а также предложить способы компенсации шумов и нестабильностей ВОГ (таких, как обратное рэлеевское рассеяние, оптический нелинейный эффект, температурные градиенты, магнитное поле и др.).

Основной задачей дипломной работы является рассмотрение ключевых аспектов теории ВОГ на основе анализа погрешностей его элементов и качественной оценки точностных характеристик устройства с учетом использования различных подходов к решению проблемы повышения его чувствительности.

Необходимо также рассмотреть различные схемотехнические методы снижения уровня шумов и нестабильностей ВОГ.

Отдельно отразить технико-экономические аспекты работы, вопросы безопасности жизнедеятельности при проведении исследований, а также проблемы экологической безопасности при использовании прибора.

1. Принципы волоконно-оптической гироскопии

1.1 Основные характеристики ВОГ

Оптический гироскоп относится к классу приборов, в которых в замкнутом оптическом контуре распространяются встречно бегущие световые лучи. Принцип действия оптического гироскопа основан на «вихревом» эффекте Саньяка, открытым этим ученым в 1913 г. . Сущность вихревого эффекта заключается в следующем. Если в замкнутом оптическом контуре в противоположных направлениях распространяются два световых луча, то при неподвижном контуре фазовые набеги обоих лучей, прошедших весь контур, будут одинаковыми. При вращении контура вокруг оси, нормальной к плоскости контура, фазовые набеги лучей неодинаковы, а разность фаз лучей пропорциональна угловой скорости вращения контура. Для объяснения вихревого эффекта Саньяка разработаны три теории: кинематическая, доплеровская и релятивистская. Наиболее простая из них - кинематическая, наиболее строгая - релятивистская, основанная на общей теории относительности. Рассмотрим вихревой эффект Саньяка в рамках кинематической теории.

Рис 1.1. Кинематическая схема вихревого эффекта Саньяка.

На рис. 1.1 изображен плоский замкнутый оптический контур произвольной формы, в котором распространяются в противоположных направлениях две световые волны 1 и 2 (рис. 1.1). Плоскость контура перпендикулярна оси вращения, проходящей через произвольную точку О. Угловую скорость вращения контура обозначим. Участок пути светового луча АВ примем бесконечно малым, его длину обозначим l. Радиус-вектор произвольной точки контура А обозначим r. Отрезок дуги АВ" обозначим. При вращении контура вокруг точки О с угловой скоростью линейная скорость точки А равна. Учитывая, что треугольник AB"B мал:

где - угол между вектором линейной скорости точки А и касательной AM к контуру в точке А.

Проекция линейной скорости точек контура на направление вектора скорости света в этих точках

Если контур неподвижен, то время обхода участка контура АВ=l двумя противоположными лучами одинаково; обозначим его dt.

dt = l / c =. (1.3)

При вращении контура с угловой скоростью кажущееся расстояние между точками А и В для встречно бегущих лучей изменяется. Для волны бегущей из точки А в точку В, т.е. в направлении, совпадающем с направлением вращения контура, расстояние удлиняется, так как за время dt точка В переместится на угол, перейдя в точку С.

Это удлинение пути для светового луча будет равно dt, поскольку в каждое мгновение луч направлен по касательной к контуру, по этой же касательной направлена проекция линейной скорости. Таким образом, отрезок пути, проходимый лучом, равен l + dt. Рассуждая аналогично, для встречно бегущего луча света будет иметь место кажущееся сокращение отрезка пути l - dt

Считая скорость света инвариантной величиной, кажущиеся удлинения и сокращения путей для встречных лучей можно эквивалентно считать удлинениями и сокращениями отрезков времени, т.е.

Подставляя выражения (1.2)-(1.3) для и dt, получаем

Из рис 1.1. следует

где s - площадь сектора.

С точностью до бесконечно малых второго порядка площадь АОВ можно заменить на s. Тогда

Полное время распространения встречных лучей вдоль всего контура

где суммирование ведётся по числу элементарных секторов, на которые разбит весь контур.

Таким образом, полное время, затрачиваемое лучом, бегущим по часовой стрелке при обходе всего вращающегося контура, больше чем полное время, затрачиваемое лучом, бегущим против часовой стрелки.

Разность времен и или относительное запаздывание встречных волн

где S - площадь всего контура.

Если относительное запаздывание встречных волн (1.8) возникающее при вращении, выразить через разность фаз встречных волн, то она составит

Разность фаз является фазой Саньяка. Как видно, фаза Саньяка пропорциональна угловой скорости вращения контура.

Кинематическую теорию вихревого эффекта Саньяка ещё проще объяснить, рассматривая идеальный кольцевой оптический контур радиуса (рис 1.2.).

Рис 1.2. Эффект Саньяка в кольцевом оптическом контуре.

Луч света приходит в точку А и с помощью зеркал и расщепляется на два луча, один из которых распространяется по часовой стрелке в контуре, а другой - против часовой стрелки. С помощью этих же зеркал, после распространения в контуре лучи объединяются и направляются по одному, пути. При неподвижном контуре пути прохождения лучей одинаковы и равны

где с - скорость света, - время прохождения периметра контура лучом.

Оба луча приходят в точку А на расщепитесь в фазе. Если контур вращается с постоянной угловой скоростью, то луч, распространяющийся по часовой стрелке, прежде чем попадет на перемещающийся расщепитель, пройдет путь

Это вызвано тем, что за время прохождения луча по замкнутому контуру расщепитель, находившийся ранее в точке А, уйдет в точку В. Для луча, распространяющегося против часовой стрелки, путь

Как видим, пути распространения противоположно бегущих лучей разные. Поскольку скорость света с - величина постоянная, это эквивалентно разным временам прохождения лучей, распространяющихся в противоположных направлениях замкнутого вращающегося контура, и.

Разность времен распространения

В приближении первого порядка по можно записать

Что совпадает с выражением (1.8), полученным выше, если считать - площадь контура.

Эффект Саньяка может быть объяснен на основе понятия доплеровского сдвига частоты. Эффектом Доплера называется явление изменения частоты колебаний, излученных передатчиком и принимаемых приемником, наблюдающееся при взаимном относительном перемещении излучателя и приемника. При этом частота принятого колебания

где f - частота излученного колебания, V - скорость перемещения передатчика, а знаки «+» или «-» соответствуют сближению или удалению передатчика относительно наблюдателя.

Доплеровский частотный сдвиг

пропорционален скорости перемещения излучателя.

Рассмотрим кольцевой оптический контур радиуса вращающийся с угловой скоростью (рис. 1.3.). Аналогом перемещающегося излучателя в контуре является движущееся с линейной скоростью отражающее зеркало. При вращении контура встречно бегущие лучи имеют различные длины волн вследствие доплеровского сдвига, накапливаемого при отражении волны от зеркала, смещающегося со скоростью.

При вычислении фазы, накопленной в обоих плечах оптического контура, необходимо рассматривать вращающуюся систему в целом. Оба оптических пути тогда равны, но длины волн отличаются на доплеровский сдвиг. Тогда относительный фазовый сдвиг

Определим величину. Длина волны излучения, претерпевшего доплеровский сдвиг:

Подставляя полученное выражение в формулу для относительного фазового сдвига, получаем

Фаза Саньяка

что полностью совпадает с выражением (1.9), полученным при вычислении разности времен обхода лучом вращающегося контура.

Таким образом, мы рассмотрели два эквивалентных подхода к объяснению эффекта Саньяка. В первой интерпретации эффект проявляется как разность времен распространения встречно бегущих лучей во вращающемся контуре; во второй - как разность длин волн лучей в двух плечах контура одинаковой оптической длины.

Измеряя электронным устройством разность фаз, можно получить информацию от угловой скорости вращения основания (объекта), на котором закреплен контур. Интегрируя измеренный сигнал, получают угол поворота основания (объекта). Эта информация затем используется для управления и стабилизации объектов.

В зависимости от конструкции замкнутого оптического контура различают два типа оптических гироскопов. Первый тип, так называемый кольцевой лазерный гироскоп (КЛГ), в котором контур образован активной средой (смесью газов гелия и неона) и соответствующими зеркалами, образующими замкнутый путь (кольцевой лазер) . Второй тип--волоконный оптический гироскоп (ВОГ), в котором замкнутый контур образован многовитковой катушкой оптического волокна. Принципиальная схема ВОГ показана на рис. 1.3.

Рис 1.3. Принципиальная схема волоконно-оптического гироскопа.

Если контур ВОГ образовать нитью оптического волокна длиной L, намотанного на цилиндр радиуса R, то фаза Саньяка

где R - радиус витка контура; N - число витков; S -площадь витка контура.

В соответствии с рис. 1.3., излучение источника подается на светоделитель и разделяется на два луча. Два луча, обошедшие контур в противоположных направлениях, рекомбинируют на светоделителе и смешиваются в фотодетекторе. Результирующее колебание можно записать в виде

где - амплитуды колебаний; - частота излучения; ; ; - начальная фаза колебания; - фаза Саньяка.

Интенсивность излучения на фотодетекторе

Обозначив интенсивность излучения на выходе лазерного диода считая, что в волоконном контуре отсутствуют потери, и полагая, что светоделитель разделяет энергию точно поровну, имеем:

Тогда выражение (1.21) принимает вид:

Анализ выражения позволяет сделать вывод о низкой чувствительности прибора в данной конфигурации к малым угловым скоростям:

Для максимизации чувствительности к малым изменениям информативного параметра (фазы Саньяка) в волоконный контур необходимо поместить простой фазовый модулятор, дающий «невзаимный» фазовый сдвиг /2 между двумя противоположно бегущими лучами. Тогда интенсивность на фотодетекторе при малых угловых скоростях изменяется почти линейно:

а чувствительность ВОГ будет находиться на максимальном значении 0.5.

Различные способы введения «невзаимного» фазового сдвига будут рассмотрены ниже.

В конфигурации, приведенной на рис 1.3., выходной ток фотодетектора повторяет изменения интенсивности (мощности) входного излучения, т.е.:

где - квантовая эффективность фотодетектора; q - заряд электрона; h - постоянная Планка; f - частота оптического излучения.

Если пренебречь постоянной составляющей выходного тока, то на выходе фотодетектора получим сигнал

При введении невзаимного фазового сдвига /2 и для малых значений выходной ток:

Таким образом, значения выходного тока пропорциональны фазе Саньяка, которая в свою очередь пропорциональна угловой скорости вращения контура.

1.2 Принцип взаимности и регистрация фазы в ВОГ

В типичных экспериментальных конструкциях гироскопов используется катушка с R = 100 мм при длине волокна L = 500 м. Обнаружение скорости вращения в 1 град/ч требует регистрации фазы с разрешением порядка 10-5 рад. Это показано на рис. 1.4., где изображены значения фазового сдвига в функции угловой скорости вращения контура и величины LR при = 0,63 мкм.

Оптические интерференционные системы фазовой регистрации с такой чувствительностью хорошо известны, однако в гироскопах существуют некоторые особые моменты, связанные с регистрацией фазы. Первый связан с тем фактом, что зачастую гироскоп работает с номинальной почти нулевой разностью хода, и для малых изменений в относительном значении фазы имеет место пренебрежимо малое изменение интенсивности на выходе.

Рис 1.4. Фаза Саньяка в угловой скорости вращения для различных значений параметра LR.

Работа при смещении фазы в 90° максимизирует чувствительность, однако это вносит некоторую невзаимность для двух направлений распространения лучей в гироскопе, т. к. фаза луча, распространяющегося по часовой стрелке, отличается от фазы луча, распространяющегося против часовой стрелки, в отсутствии вращения.

Свойство взаимности - это второй важный момент в ВОГ. Фазовая невзаимность в ВОГ определяется дифференциальной разностью фаз встречно бегущих лучей. Любая фазовая невзаимность (разность фаз) для двух направлений дает изменения в показаниях гироскопа. Если невзаимность является функцией времени, то имеет место некоторый временной дрейф в показаниях гироскопа. Волокно длиной 500 м дает фазовую задержку порядка 1010 рад. Таким образом, для того чтобы зарегистрировать скорость вращения 0,05 град/ч, нужно, чтобы пути распространения противоположно бегущих лучей согласовывались с относительной точностью до 10-17 рад.

Следует, кроме того, отметить, что сам принцип действия волоконного оптического гироскопа основан на невзаимном свойстве распространения встречных волн во вращающейся системе отсчета (появление разности фазовых набегов двух лучей при вращении). Поэтому несомненна важность анализа невзаимных эффектов и устройств в ВОГ (по меньшей мере, хотя бы для определения точности прибора).

Принцип взаимности хорошо иллюстрируется известной теоремой Лоренца для взаимных систем. Если характеризовать две электрод магнитные волны векторами, и, где - вектор напряженности электрического поля, а - вектор напряженности магнитного поля, то принцип взаимности выполняется для систем, у которых

где - антисимметричные тензоры магнитной и диэлектрической

проницаемостей материальной среды соответственно.

Условием невзаимности является неравенство нулю приведенного выше соотношения. К средам, проявляющим невзаимность, относятся магнитно-гиротропные материалы (ферромагнетики): электрически гиротропные среды (диамагнетики), находящиеся под действием магнитного поля; прозрачные диэлектрики; среды, совершающие поступательное движение относительно любой системы координат, в которой задано электромагнитное поле; вращающиеся среды; канализирующие системы типа волноводов и световодов. Последние случаи представляют особый интерес, поскольку при вращении ВОГ появляется фазовая невзаимность, дающая фазовую разность Саньяка.

При вращательном движении среды условие невзаимности имеет вид

Исключение случайных флуктуаций может потребовать длительного накопления (интегрирования) выходного сигнала ВОГ, с тем чтобы выделить полезную составляющую (как показано в в некоторых экспериментальных установках высокочувствительных ВОГ время интегрирования доходит до минут и даже до десятков минут).

Применительно к ВОГ анализ принципа взаимности удобно проводить для цепи с четырьмя входами и выходами. Для оптического волновода четыре входа соответствуют вводам излучения вдоль двух взаимно перпендикулярных направлений поляризации на каждом конце волокна. Соответствующие входы и выходы определяются вдоль идентичных поляризационных осей.

Отсюда следует, что в случае ввода излучения с исходным направлением поляризации Х свет, выходящий с ортогональным направлением поляризации У, будет обладать различными набегами фазы в каждом направлении распространения, а свет, выходящий с исходным направлением поляризации X, будет обладать одинаковыми набегами фазы для каждого направления распространения.

В этом часть требований, налагаемых интерпретацией теоремы взаимности Лоренца, которая постулирует, что в случае линейной системы оптические пути в точности взаимны, если данная входная пространственная мода оказывается такой же на выходе.

Одним из параметров пространственной моды является поляризация; второй параметр также должен быть определен, например пространственное распределение (расположение) моды. Следовательно, на конце контура ВОГ должны быть как поляризационный фильтр (селектирующий исходную поляризацию), так и пространственный фильтр, что будет удовлетворять принципу взаимности Лоренца.

Эти довольно простые устройства в конструкции ВОГ (при условии, что они могут быть реализованы с достаточной точностью) будут гарантировать условия взаимности в системе, но только в том случае, если выполняется условие линейности. Если же нелинейности значительны, то ВОГ будет обладать взаимностью в том случае, если имеется точная симметрия относительно средней точки волоконного контура. Это условие подразумевает, что энергия, вводимая в каждый конец контура, одинакова и что свойства волокна равномерно распределены (или по крайней мере симметричны).

Мощность оптического излучения, вводимого в волокно, столь мала (всегда меньше чем 1.2 мВт), что, казалось бы, нелинейностями можно пренебречь. Однако чувствительность ВОГ к невзаимностям чрезвычайно высока и нелинейные эффекты (в частности, эффект Керра) приводят к заметным не взаимностям, эквивалентным скорости вращения выше 1 град/ч. В оптическом волокне имеет место вращение плоскости поляризации линейно-поляризованного света под действием внешнего магнитного поля (эффект Фарадея).

Вращение Фарадея -- это другой невзаимный эффект. В случае линейно-поляризованного света полное вращение зависит от линейного интеграла тока, взятого по оптическому пути. В случае ВОГ этот интеграл равен нулю в магнитном поле Земли. Однако, более тщательное изучение взаимодействия света в волокне и магнитного поля вдоль волокна указывает на то, что истинным источником вращения является индуцированное круговое двойное лучепреломление и что упомянутый выше простой подход оказывается полезным только в том случае, если обе круговые компоненты поляризации (правая и левая) обладают одинаковыми амплитудами. Это справедливо только для случая линейно-поляризованного света.

При распространении света в волокне имеют место все возможные состояния поляризации и процент пребывания света в каждом собственном круговом поляризационном состоянии Фарадеевского ротатора изменяется вдоль оптического пути случайным образом. Это приводит в результате к определенной разности фаз для двух направлений распространения линейно-поляризованной моды на выходе.

Таким образом, ВОГ весьма чувствителен к магнитному полю Земли, и при конструировании ВОГ для измерения скорости вращения требуется магнитное экранирование (или обеспечение линейной поляризации света на всем пути в волокне). Предполагая, что магнитное поле Земли равно 27 и считая, что компенсация поля отсутствует на 5% длины волокна, можно получить значение отклонения фазы, которое эквивалентно скорости вращения Земли.

Вышеизложенные моменты включали невзаимные эффекты, индуцированные в волокне; однако, уже даже первые этапы при конструировании ВОГ с точки зрения сохранения взаимности в системе регистрации должны заключаться в том, чтобы обеспечить одинаковую длину оптических путей в ВОГ.

На рис. 1.3. видно, что эта конфигурация не обладает свойством взаимности, так как пучок света, распространяющийся по часовой стрелке, проходит через делитель света дважды, а пучок света, распространяющийся против часовой стрелки, отражается от светоделителя дважды. Но в то же время взаимный оптический выходной путь от чувствительного контура идет в направлении обратно к источнику (от светоделителя к диоду), т. е. вдоль входного оптического пути.

Следовательно, добиться взаимности в системе регистрации можно, если поместить второй расщепитель пучка вдоль входногo оптического пути (рис. 1.5.).

Диапазон скоростей вращения, которые измеряются высокочувствительным гироскопом инерциальных систем управления, простирается от 0,1 град/ч до 400 град/ч. При LR = 100 м этим значениям скорости соответствует диапазон изменения фазы от 10 до 10 рад (рис.1.4.).

Рис 1.5. Схема ВОГ с постоянным смещением разности фаз.

К настоящему времени уже затрачены значительные усилия на увеличение чувствительности прибора к низким скоростям, и в то же время весьма мало внимания уделяется проблемам, связанным с увеличением требуемого динамического диапазона.

Как уже отмечалось, в случае необходимости измерения больших изменений интенсивности для данного изменения фазы нужно внести фазовый сдвиг /2, т. е. интерферометр должен работать в режиме квадратуры. В этом режиме связь между изменениями интенсивности и изменениями фазы является линейной (до 1%) только до максимальных отклонений фазы в 0,1 рад. Компенсация нелинейности может быть осуществлена в самой системе регистрации, однако лишь до максимального отклонения фазы порядка 1 рад.

Существует ряд способов регистрации фазы, которые могут быть использованы при конструировании ВОГ.

Наиболее распространены схемы, где используется статическая разность фаз в 90° между двумя лучами и схемы с переменной разностью фаз в 90°.

Статическая невзаимная разность фаз между лучами, распространяющимися по часовой и против часовой стрелки, может создаваться, например, с помощью элемента Фарадея, размещаемого на одном конце волоконного контура (рис. 1.5.). Изменения регистрируемой интенсивности на взаимном выходе соответствуют изменениям в значении относительной фазы для двух лучей, обегающих контур.

Основываясь на принципах смещения фазы можно предложить другой принцип регистрации обладающий более высокой чувствительностью.

Относительная фаза для лучей, распространяющихся по двум направлениям, модулируется по фазе (- /2, /2) на частоте 1/2Т (Т - время прохождения луча через контур). Таким образом, свет, инжектируемый в момент времени, в направлении по часовой стрелке испытывает задержку на 90°, свет, распространяющийся в направлении против часовой стрелки, не испытывает задержки (это определяется положением фазового модулятора, как показано на рис. 1.4.).

Однако, к тому моменту времени, когда движущийся против часовой стрелки луч достигнет положения фазового модулятора, смещения фазы не будет. Свет, инжектируемый по часовой стрелке в момент, времени, интерферирует с волной, распространяющейся против часовой стрелки со сдвигом фаз - 90°, и т. д.

Следовательно, результирующая волна на выходе, которая включает как эффект периодического фазового смещения (дающего в принципе постоянный уровень интенсивности на выходе), так и фазовый сдвиг из-за эффекта Саньяка, модулируется так, как это показано на рис. 1.5. Таким образом, выходной сигнал фотодетектора

При модуляции:

Глубина модуляции зависит от фазы, индуцированной вращением.

При создании ВОГ для модуляции обычно используется цилиндрический пьезоэлектрический датчик, вокруг которого намотано волокно. Более удобно использовать синусоидальную модуляцию относительной фазы двух противоположно бегущих лучей. Если разность фаз, индуцированная вращением, равна, то легко показать, что переменная составляющая интенсивности суммарной волны на выходе интерферометра, с учетом периодической фазовой модуляции на частоте и с девиацией будет равна

Используя стандартное разложение по Бесселевым функциям, получаем:

Таким образом регистрация на частоте модуляции дает сигнал, амплитуда которого пропорциональна; эта величина может быть сделана максимальной, если выбрать значение, максимизирующее (т.е. 1.8 рад).

Величина девиации является максимальной индуцированной эффективной разностью фаз между лучами, движущимися по часовой стрелке и против часовой стрелки за время цикла модуляции. При оценке этого значения надо знать не только глубину модуляции самого датчика, необходимо учитывать также пролетное время для оптического пути в волокне.

1.3 Модел ь шумов и нестабильностей в ВОГ

Волоконный оптический гироскоп представляет собой достаточно сложную оптико-электронную систему. При конструировании реального прибора оптические элементы и электронные устройства должны выбираться и компоноваться так, чтобы минимизировать влияние внешних возмущений (температурных градиентов, механических и акустических вибраций, магнитных полей и др.). В самом приборе, кроме того, имеет место ряд внутренних источников шумов и нестабильностей. Условно эти шумы и нестабильности можно разделить на быстрые и медленные возмущения. Быстрые возмущения оказывают случайное кратковременное усредненное влияние (секунды) на чувствительность ВОГ; они отчетливо проявляются при нулевой скорости вращения (кратковременный шум). Медленные возмущения вызывают медленный дрейф сигнала, приводящий к долговременным уходам в считывании показаний ВОГ (долговременный дрейф).

Обобщенная модель источников шумов и нестабильностей в ВОГ показана на рис. 1.6.

Рис 1.6. Обобщённая модель шумов и нестабильностей в ВОГ.

Если исключить влияние всех источников шумов и нестабильностей в ВОГ, что, конечно возможно лишь в принципе, то всегда остаются принципиально неустранимые шумы - так называемые квантовые или фотонные шумы; их называют также дробовыми шумами. Эти шумы появляются лишь в присутствии полезного оптического сигнала на входе фотодетектора и обусловлены случайным распределением скорости прихода фотонов на фотодетектор, что приводит к случайным флуктуациям тока фотодетектора. В этом случае чувствительность (точность) ВОГ ограничивается лишь дробовыми (фотонными) шумами. Чувствительность (точность) ВОГ, определяемая дробовыми (фотонными) шумами, как и всяких других оптических информационно-измерительных систем, является фундаментальным пределом чувствительности (точности) прибора. Фотонные шумы являются следствием квантовой природы светового излучения. Применительно к оптическим системам передачи информации предельная помехоустойчивость этих систем, обусловленная фотонными шумами, была вычислена в .

Следуя работам , проведем оценку фундаментального предела чувствительность (точности) ВОГ.

Уровень фотонных шумов зависит от интенсивности оптического излучения, падающего на фотодетектор, и определяется флуктуациями интенсивности оптического излучения.

Полученная выше формула для интенсивности излучения на фотодетекторе позволяет записать выражение для мощности излучения, падающего на фотодетектор в виде:

где Р - мощность входного в ВОГ излучения.

Из этого выражения следует, что дробовые (фотонные) шумы, обусловленные процессом детектирования мощности излучения, связаны с появлением "фазовых" шумов и соответственно приводят к ошибке измерения угловой скорости вращения. Если фотодетектор принимает поток фотонов, то число обнаруживаемых фотонов в единицу времени является случайной величиной, распределенной по закону Пуассона (в случае использования лазерного излучателя) Математическое ожидание числа фотонов, падающих на фотодетектор, за время интегрирования Т равно средней энергии, деленной на энергию одного фотона:

где h - постоянная Планка; f - частота излучения.

Среднеквадратическое значение числа фотонов пуассоновского распределения равно квадратному корню из среднего значения, т. е.

Найдем среднеквадратическое значение "фазового" шума:

Тогда с учётом выражения (1.35)получим:

где - полоса пропускания системы обнаружения и обработки сигнала.

Для типовых значений мкВт и Гц

Отсюда следует, что при ширине полосы 1 Гц предел чувствительности по измеряемой фазе составляет рад.

Для определения среднеквадратической ошибки измерения угловой скорости вращения, обусловленной фотонным шумом, воспользуемся выражением для фазы Саньяка:

Приняв, что типовой ВОГ имеет L = 1 км, D = 10 см, (1 / 2)P0 = 100 мкВт, f = Гц, имеем:

Откуда следует, что для ширины полосы 1 Гц и для контура с LR = 50 порог регистрации скорости вращения составляет 0.01 град/ч. Выражая полосу пропускания через единицы, обратные часам, получаем выражение для минимального случайного дрейфа ВОГ

Оценку предельной чувствительности ВОГ можно найти по отношению сигнал-шум на выходе устройства обработки. Устройство обработки выходного сигнала ВОГ состоит из фотодетектора с квантовой эффективностью, усилителя с коэффициентом усиления (умножения) G , нагрузочного сопротивления Rн и низкочастотного фильтра с полосой пропускания f.

Выходной ток фотодетектора:

где, q - заряд электрона.

Учитывая коэффициент усиления G , сигнальную составляющую тока запишем в виде

Мощность сигнальной составляющей равна

Мощность дробовых шумов согласно стандартной методике вычисления отношения сигнал-шум вычисляется по формуле Шотки и равна:

При вычислении мощности шума учитываются только принципиально неустранимые дробовые шумы полезного сигнала.

Отношение сигнал-шум примет вид

Полагая (с / ш) = 1 , заменяя функцию синуса его аргументом, подставляя вместо с ее значение через угловую скорость вращения, получаем минимально обнаруживаемую угловую скорость вращения:

Подобные документы

    Оптические кабели и разъемы, их конструкции и параметры. Основные разновидности волоконно-оптических кабелей. Классификация приемников оптического излучения. Основные параметры и характеристики полупроводниковых источников оптического излучения.

    курс лекций , добавлен 13.12.2009

    Принцип действия обобщенного волоконно-оптического датчика. Оптическая схема модуляции света. Классификация фазовых (интерферометрических) датчиков. Внешний вид интерферометра световолоконного автоматизированного ИСА-1, технические характеристики.

    доклад , добавлен 19.07.2015

    Конструкция оптического волокна и расчет количества каналов по магистрали. Выбор топологий волоконно-оптических линий связи, типа и конструкции оптического кабеля, источника оптического излучения. Расчет потерь в линейном тракте и резервной мощности.

    курсовая работа , добавлен 09.02.2011

    Принцип построения волоконно-оптической линии. Оценка физических параметров, дисперсии и потерь в оптическом волокне. Выбор кабеля, системы передачи. Расчет длины участка регенерации, разработка схемы. Анализ помехозащищенности системы передачи.

    курсовая работа , добавлен 01.10.2012

    Схема трассы волоконно-оптического кабеля. Выбор оптического кабеля, его характеристики для подвешивания и прокладки в грунт. Расчет параметров световода. Выбор оборудования и оценка быстродействия кабеля, его паспортизация. Поиск и анализ повреждений.

    курсовая работа , добавлен 07.11.2012

    Математическая модель тетрады чувствительных элементов прибора БИУС-ВО. Принцип действия чувствительного элемента прибора БИУС-ВО – волоконно–оптического гироскопа. Разработка методики оценки шумовых составляющих канала измерения угловой скорости.

    дипломная работа , добавлен 24.09.2012

    Принцип работы оптического волокна, основанный на эффекте полного внутреннего отражения. Преимущества волоконно-оптических линий связи (ВОЛС), области их применения. Оптические волокна, используемые для построения ВОЛС, технология их изготовления.

    реферат , добавлен 26.03.2019

    Определение затухания (ослабления), дисперсии, полосы пропускания, максимальной скорости передачи двоичных импульсов в волоконно-оптической системе. Построение зависимости выходной мощности источника оптического излучения от величины электрического тока.

    контрольная работа , добавлен 21.06.2010

    Цифровые волоконно-оптические системы связи, понятие, структура. Основные принципы цифровой системы передачи данных. Процессы, происходящие в оптическом волокне, и их влияние на скорость и дальность передачи информации. Контроль PMD.

    курсовая работа , добавлен 28.08.2007

    Общее описание и назначение, функциональные особенности и структура пассивных компонентов волоконно-оптических линий связи: соединители и разветвители. Мультиплексоры и демультиплексоры. Делители оптической мощности, принцип их действия и значение.

Лазерные гироскопы обладают рядом преимуществ по сравнению с электромеханическими. Эти преимущества открывают широкую перспективу в практическом использовании гироскопов на лазерах. Так, для конструкторов систем управления всегда весьма важно, каким способом и в каком виде снимаются с гироскопов выходные данные.

Лазерный гироскоп позволяет получить на его выходе очень удобные для управления сигналы, например, в виде последовательности электрических импульсов, полярность которых определяется направлением поворота гироскопа. Число одиночных импульсов пропорционально малым фиксированным приращениям угла поворота (например, одной секунде дуги). Полный угол поворота гироскопа находится по общему количеству импульсов. Еще более важным для конструкторов является точность работы прибора. Точность работы гироскопов на лазерах чрезвычайно высока. Так как по своему назначению они должны регистрировать скорость вращения меньше 0,1 град/ч, то это приводит к необходимости измерять разность оптических траекторий с точностью до 10 -5 нм и частотные изменения около 0,1 Гц (при рабочей частоте 10 14 —10 15 Гц).

Самая простая конструкция такого прибора представляет собой обычное устройство с тремя зеркалами-отражателями, размещенными по углам контура так, что образуется замкнутая траектория (кольцо) для светового луча. Лазерный луч (см. рис.) создается двумя квантовыми генераторами (ОКХ), один из которых посылает излучение по часовой стрелке, а другой — против часовой стрелки. Упоминание о двух ОКХ приводится с целью упрощения рассуждений. На практике в лазерном гироскопе может быть установлен один оптический квантовый генератор, имеющий два и более активных элементов, формирующих лучи, движущиеся в противоположных направлениях.

Отражаясь от зеркал, проходя от зеркала к зеркалу и, наконец, через полупрозрачное зеркало и призму, световое излучение ослабевает. Для поддержания световых волн в системе на уровне, необходимом для нормальной работы, нужно, чтобы коэффициент усиления световых лучей вдоль всего пути был бы не менее 1. Необходимо также, чтобы на длине пути лазерных лучей укладывалось бы целое число длин волн, генерируемых лазерами, т. е. сдвиг фаз световых колебаний в полости резонатора должен равняться нулю. Для выполнения последнего условия частота колебаний лазера должна быть такой, чтобы усидивающая среда дала коэффициент усиления, достаточный для компенсации потерь в отражающих и других элементах оптического контура лазера. Эта частота при работе ОКГ устанавливается автоматически.

При повороте кольцевого резонатора в инерциальном пространстве оптические пути, проходимые лучами, движущимися по и против часовой стрелки, оказываются неодинаковыми. Разность между оптическими путями приводит в этом случае к возникновению разности частот генерируемых колебаний (эффект Саньяка), которая и определяет скорость вращения резонатора.